A Tutorial on Graph Theory for Brain Signal Analysis
- URL: http://arxiv.org/abs/2007.05800v1
- Date: Sat, 11 Jul 2020 15:36:52 GMT
- Title: A Tutorial on Graph Theory for Brain Signal Analysis
- Authors: Nikolaos Laskaris, Dimitrios A. Adamos, Anastasios Bezerianos
- Abstract summary: This tutorial paper refers to the use of graph-theoretic concepts for analyzing brain signals.
For didactic purposes it splits into two parts: theory and application.
- Score: 1.8416014644193066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This tutorial paper refers to the use of graph-theoretic concepts for
analyzing brain signals. For didactic purposes it splits into two parts: theory
and application. In the first part, we commence by introducing some basic
elements from graph theory and stemming algorithmic tools, which can be
employed for data-analytic purposes. Next, we describe how these concepts are
adapted for handling evolving connectivity and gaining insights into network
reorganization. Finally, the notion of signals residing on a given graph is
introduced and elements from the emerging field of graph signal processing
(GSP) are provided. The second part serves as a pragmatic demonstration of the
tools and techniques described earlier. It is based on analyzing a multi-trial
dataset containing single-trial responses from a visual ERP paradigm. The paper
ends with a brief outline of the most recent trends in graph theory that are
about to shape brain signal processing in the near future and a more general
discussion on the relevance of graph-theoretic methodologies for analyzing
continuous-mode neural recordings.
Related papers
- Does Graph Prompt Work? A Data Operation Perspective with Theoretical Analysis [7.309233340654514]
This paper introduces a theoretical framework that rigorously analyzes graph prompting from a data operation perspective.
We provide a formal guarantee theorem, demonstrating graph prompts capacity to approximate graph transformation operators.
We derive upper bounds on the error of these data operations by graph prompts for a single graph and extend this discussion to batches of graphs.
arXiv Detail & Related papers (2024-10-02T15:07:13Z) - Foundations and Frontiers of Graph Learning Theory [81.39078977407719]
Recent advancements in graph learning have revolutionized the way to understand and analyze data with complex structures.
Graph Neural Networks (GNNs), i.e. neural network architectures designed for learning graph representations, have become a popular paradigm.
This article provides a comprehensive summary of the theoretical foundations and breakthroughs concerning the approximation and learning behaviors intrinsic to prevalent graph learning models.
arXiv Detail & Related papers (2024-07-03T14:07:41Z) - On Discprecncies between Perturbation Evaluations of Graph Neural
Network Attributions [49.8110352174327]
We assess attribution methods from a perspective not previously explored in the graph domain: retraining.
The core idea is to retrain the network on important (or not important) relationships as identified by the attributions.
We run our analysis on four state-of-the-art GNN attribution methods and five synthetic and real-world graph classification datasets.
arXiv Detail & Related papers (2024-01-01T02:03:35Z) - A Survey on Graph Classification and Link Prediction based on GNN [11.614366568937761]
This review article delves into the world of graph convolutional neural networks.
It elaborates on the fundamentals of graph convolutional neural networks.
It elucidates the graph neural network models based on attention mechanisms and autoencoders.
arXiv Detail & Related papers (2023-07-03T09:08:01Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Learning node embeddings via summary graphs: a brief theoretical
analysis [55.25628709267215]
Graph representation learning plays an important role in many graph mining applications, but learning embeddings of large-scale graphs remains a problem.
Recent works try to improve scalability via graph summarization -- i.e., they learn embeddings on a smaller summary graph, and then restore the node embeddings of the original graph.
We give an in-depth theoretical analysis of three specific embedding learning methods based on introduced kernel matrix.
arXiv Detail & Related papers (2022-07-04T04:09:50Z) - How Neural Processes Improve Graph Link Prediction [35.652234989200956]
We propose a meta-learning approach with graph neural networks for link prediction: Neural Processes for Graph Neural Networks (NPGNN)
NPGNN can perform both transductive and inductive learning tasks and adapt to patterns in a large new graph after training with a small subgraph.
arXiv Detail & Related papers (2021-09-30T07:35:13Z) - Spectral Embedding of Graph Networks [76.27138343125985]
We introduce an unsupervised graph embedding that trades off local node similarity and connectivity, and global structure.
The embedding is based on a generalized graph Laplacian, whose eigenvectors compactly capture both network structure and neighborhood proximity in a single representation.
arXiv Detail & Related papers (2020-09-30T04:59:10Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.