論文の概要: Lightweight Modules for Efficient Deep Learning based Image Restoration
- arxiv url: http://arxiv.org/abs/2007.05835v1
- Date: Sat, 11 Jul 2020 19:35:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 13:44:51.551148
- Title: Lightweight Modules for Efficient Deep Learning based Image Restoration
- Title(参考訳): 深層学習に基づく画像復元のための軽量モジュール
- Authors: Avisek Lahiri, Sourav Bairagya, Sutanu Bera, Siddhant Haldar, Prabir
Kumar Biswas
- Abstract要約: そこで我々は,与えられたベースラインモデルの計算的低コストな変種を生成するために,いくつかの軽量な低レベルモジュールを提案する。
その結果,提案するネットワークは,全容量ベースラインと比較して,視覚的に類似した再構成を一貫して出力することがわかった。
- 参考スコア(独自算出の注目度): 20.701733377216932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low level image restoration is an integral component of modern artificial
intelligence (AI) driven camera pipelines. Most of these frameworks are based
on deep neural networks which present a massive computational overhead on
resource constrained platform like a mobile phone. In this paper, we propose
several lightweight low-level modules which can be used to create a
computationally low cost variant of a given baseline model. Recent works for
efficient neural networks design have mainly focused on classification.
However, low-level image processing falls under the image-to-image' translation
genre which requires some additional computational modules not present in
classification. This paper seeks to bridge this gap by designing generic
efficient modules which can replace essential components used in contemporary
deep learning based image restoration networks. We also present and analyse our
results highlighting the drawbacks of applying depthwise separable
convolutional kernel (a popular method for efficient classification network)
for sub-pixel convolution based upsampling (a popular upsampling strategy for
low-level vision applications). This shows that concepts from domain of
classification cannot always be seamlessly integrated into image-to-image
translation tasks. We extensively validate our findings on three popular tasks
of image inpainting, denoising and super-resolution. Our results show that
proposed networks consistently output visually similar reconstructions compared
to full capacity baselines with significant reduction of parameters, memory
footprint and execution speeds on contemporary mobile devices.
- Abstract(参考訳): 低レベルの画像復元は、現代の人工知能(AI)駆動カメラパイプラインの不可欠なコンポーネントである。
これらのフレームワークのほとんどはディープニューラルネットワークに基づいており、携帯電話のようなリソース制約のあるプラットフォーム上での計算オーバーヘッドが大きい。
本稿では,与えられたベースラインモデルの計算的に低価格な変形を作成できる軽量な低レベルモジュールをいくつか提案する。
効率的なニューラルネットワーク設計のための最近の研究は、主に分類に焦点を当てている。
しかし、低レベルの画像処理は、分類に存在しない追加の計算モジュールを必要とするイメージ・ツー・イメージの翻訳ジャンルに該当する。
本稿では,現代ディープラーニングに基づく画像復元ネットワークで使用される必須コンポーネントを置き換える汎用的効率的なモジュールを設計することで,このギャップを埋めることを目指す。
また,サブピクセル・コンボリューションに基づくアップサンプリング(低レベルのビジョンアプリケーションで一般的なアップサンプリング戦略)において,深度分離可能な畳み込みカーネル(効率的な分類ネットワークの一般的な方法)を適用する際の欠点について,分析を行った。
これは、分類領域からの概念が必ずしも画像から画像への翻訳タスクにシームレスに統合できないことを示している。
画像インペイント,デノナイジング,超解像の3つの一般的な課題について検討した。
その結果,提案ネットワークは,パラメータやメモリフットプリント,実行速度を大幅に削減したフルキャパシティベースラインと比較して,視覚的に類似した再構成を行うことがわかった。
関連論文リスト
- Parameter-Inverted Image Pyramid Networks [49.35689698870247]
Inverted Image Pyramid Networks (PIIP) と呼ばれる新しいネットワークアーキテクチャを提案する。
私たちの中核となる考え方は、パラメータサイズの異なるモデルを使用して、画像ピラミッドの解像度の異なるレベルを処理することです。
PIIPは、オブジェクト検出、セグメンテーション、画像分類などのタスクにおいて優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-06-06T17:59:10Z) - LR-Net: A Block-based Convolutional Neural Network for Low-Resolution
Image Classification [0.0]
ノイズや低解像度の画像から低レベル特徴と大域特徴の両方を学習するためのブロックで構成された,新しい画像分類アーキテクチャを開発した。
ブロックの設計は,性能向上とパラメータサイズ削減のために,Residual ConnectionとInceptionモジュールの影響を強く受けていた。
我々は、提示されたアーキテクチャが既存の最先端畳み込みニューラルネットワークよりも高速で正確であることを示す詳細なテストを実施した。
論文 参考訳(メタデータ) (2022-07-19T20:01:11Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
本稿では,ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とする。
我々は、高解像度の空間的詳細を同時に保存しながら、複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
提案手法は,デフォーカス・デブロアリング,画像デノイング,超解像,画像強調など,さまざまな画像処理タスクに対して,最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2022-04-19T17:59:45Z) - Leveraging Image Complexity in Macro-Level Neural Network Design for
Medical Image Segmentation [3.974175960216864]
画像の複雑さは、与えられたデータセットに最適なものを選択するためのガイドラインとして利用できることを示す。
高複雑性データセットの場合、元のイメージ上で実行される浅いネットワークは、ダウンサンプリングされたイメージ上で実行されるディープネットワークよりもセグメンテーション結果が優れている可能性がある。
論文 参考訳(メタデータ) (2021-12-21T09:49:47Z) - Procedural Kernel Networks [0.6091702876917281]
本稿では,画像フィルタカーネルや他のアルゴリズムのパラメータを生成する機械学習モデルのファミリーであるProcedural Kernel Networks (PKNs)を紹介する。
軽量CNNは、入力画像を低解像度で処理し、他のカーネルベースの機械学習手法と比較して大幅に高速化する。
論文 参考訳(メタデータ) (2021-12-17T04:49:51Z) - Restormer: Efficient Transformer for High-Resolution Image Restoration [118.9617735769827]
畳み込みニューラルネットワーク(CNN)は、大規模データから一般化可能な画像の事前学習をうまく行う。
トランスフォーマーは、自然言語とハイレベルな視覚タスクにおいて、顕著なパフォーマンス向上を示している。
我々のモデルであるRecovery Transformer (Restormer) は、いくつかの画像復元タスクにおいて最先端の結果を得る。
論文 参考訳(メタデータ) (2021-11-18T18:59:10Z) - SDWNet: A Straight Dilated Network with Wavelet Transformation for Image
Deblurring [23.86692375792203]
画像劣化は、ぼやけた画像から鋭い画像を復元することを目的としたコンピュータビジョンの問題である。
我々のモデルは拡張畳み込みを用いて空間分解能の高い大きな受容場を得ることができる。
本稿では,ウェーブレット変換を用いた新しいモジュールを提案する。
論文 参考訳(メタデータ) (2021-10-12T07:58:10Z) - Glance and Focus: a Dynamic Approach to Reducing Spatial Redundancy in
Image Classification [46.885260723836865]
ディープ畳み込みニューラルネットワーク (Deep Convolutional Neural Network, CNN) は、高解像度画像で処理することで一般的に改善される。
画像中のすべての領域がタスク関連であるとは限らないという事実に着想を得て,効率的な画像分類を行う新しいフレームワークを提案する。
我々のフレームワークは、最先端の軽量CNNの多くと互換性があり、汎用的で柔軟です。
論文 参考訳(メタデータ) (2020-10-11T17:55:06Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z) - Pyramid Attention Networks for Image Restoration [124.34970277136061]
自己相似性(Self-similarity)とは、画像復元アルゴリズムで広く使われる画像を指す。
近年の深層畳み込みニューラルネットワークによる画像復元手法は, 自己相似性を十分に活用していない。
画像復元のための新しいピラミッドアテンションモジュールを提案し,マルチスケール特徴ピラミッドから長距離特徴対応をキャプチャする。
論文 参考訳(メタデータ) (2020-04-28T21:12:36Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。