論文の概要: Ensuring Fairness Beyond the Training Data
- arxiv url: http://arxiv.org/abs/2007.06029v2
- Date: Wed, 4 Nov 2020 15:52:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 05:20:03.316521
- Title: Ensuring Fairness Beyond the Training Data
- Title(参考訳): トレーニングデータを越えた公正性の確保
- Authors: Debmalya Mandal, Samuel Deng, Suman Jana, Jeannette M. Wing, and
Daniel Hsu
- Abstract要約: トレーニング分布と摂動のクラスに対して公平な分類器を開発する。
オンライン学習アルゴリズムに基づいて、公正で堅牢な解に収束する反復アルゴリズムを開発する。
実験の結果, 正当性と正当性との間には, 本質的にトレードオフがあることが判明した。
- 参考スコア(独自算出の注目度): 22.284777913437182
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We initiate the study of fair classifiers that are robust to perturbations in
the training distribution. Despite recent progress, the literature on fairness
has largely ignored the design of fair and robust classifiers. In this work, we
develop classifiers that are fair not only with respect to the training
distribution, but also for a class of distributions that are weighted
perturbations of the training samples. We formulate a min-max objective
function whose goal is to minimize a distributionally robust training loss, and
at the same time, find a classifier that is fair with respect to a class of
distributions. We first reduce this problem to finding a fair classifier that
is robust with respect to the class of distributions. Based on online learning
algorithm, we develop an iterative algorithm that provably converges to such a
fair and robust solution. Experiments on standard machine learning fairness
datasets suggest that, compared to the state-of-the-art fair classifiers, our
classifier retains fairness guarantees and test accuracy for a large class of
perturbations on the test set. Furthermore, our experiments show that there is
an inherent trade-off between fairness robustness and accuracy of such
classifiers.
- Abstract(参考訳): 訓練分布の摂動に頑健な公平な分類器の研究を開始する。
近年の進歩にもかかわらず、公正性に関する文献は公平で堅牢な分類器の設計をほとんど無視してきた。
本研究では,トレーニング分布だけでなく,トレーニングサンプルの摂動を重み付けした分布のクラスに対しても公平な分類器を開発する。
分布的にロバストなトレーニング損失を最小限に抑えることを目標とする min-max 目的関数を定式化し、同時に分布のクラスに対して公平な分類子を求める。
まずこの問題を,分布のクラスに対してロバストな公平な分類器を見つけることに還元する。
オンライン学習アルゴリズムに基づいて,このような公正で堅牢な解に確実に収束する反復アルゴリズムを開発した。
標準的な機械学習フェアネスデータセットの実験は、最先端の公正分類器と比較して、我々の分類器は、テストセット上の大規模な摂動に対する公正性保証とテスト精度を保っていることを示唆している。
さらに,本実験では,このような分類器の公平性と正確性との間には,固有のトレードオフが存在することを示した。
関連論文リスト
- Fair Bilevel Neural Network (FairBiNN): On Balancing fairness and accuracy via Stackelberg Equilibrium [0.3350491650545292]
バイアスを緩和する現在の方法は、情報損失と精度と公平性のバランスが不十分であることが多い。
本稿では,二段階最適化の原理に基づく新しい手法を提案する。
私たちのディープラーニングベースのアプローチは、正確性と公平性の両方を同時に最適化します。
論文 参考訳(メタデータ) (2024-10-21T18:53:39Z) - Fair Class-Incremental Learning using Sample Weighting [27.82760149957115]
本研究は,現在行われている課題のすべてのサンプルを鼻で使用することにより,クラスを含む特定のセンシティブなグループに対して不当な破滅的忘れを生じさせることを示す。
平均勾配ベクトルの方向を変えるために,現在のタスクサンプルのトレーニング重みを調整する,公平なクラス増分学習フレームワークを提案する。
実験により、FSWは実際のデータセットに対する最先端のアプローチよりも精度・公正なトレードオフ結果が得られることが示された。
論文 参考訳(メタデータ) (2024-10-02T08:32:21Z) - Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
細長い分布は、少数の少数派が限られた数のサンプルを含む実世界のデータにしばしば現れる。
近年の研究では、教師付きコントラスト学習がデータ不均衡を緩和する有望な可能性を示していることが明らかになっている。
本稿では,特徴空間の各クラスからのサンプルデータ分布を推定する確率論的コントラスト学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-11T13:44:49Z) - SimPro: A Simple Probabilistic Framework Towards Realistic Long-Tailed Semi-Supervised Learning [49.94607673097326]
ラベルなしデータの分散に関する前提を前提としない、高度に適応可能なフレームワークをSimProとして提案する。
我々のフレームワークは確率モデルに基づいており、期待最大化アルゴリズムを革新的に洗練する。
本手法は,様々なベンチマークやデータ分散シナリオにまたがる一貫した最先端性能を示す。
論文 参考訳(メタデータ) (2024-02-21T03:39:04Z) - Dr. FERMI: A Stochastic Distributionally Robust Fair Empirical Risk
Minimization Framework [12.734559823650887]
分散シフトが存在する場合、公正な機械学習モデルはテストデータに対して不公平に振る舞うことがある。
既存のアルゴリズムはデータへの完全なアクセスを必要とし、小さなバッチを使用する場合には使用できない。
本稿では,因果グラフの知識を必要としない収束保証付き分布安定度フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-20T23:25:28Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
まず,分布シフト,データ摂動,モデルウェイト摂動の関連性を理論的に検証した。
次に、ターゲットデータセットの公平性を保証するのに十分な条件を分析します。
これらの十分な条件により、ロバストフェアネス正則化(RFR)を提案する。
論文 参考訳(メタデータ) (2023-03-06T17:19:23Z) - Improving Robust Fairness via Balance Adversarial Training [51.67643171193376]
対人訓練 (AT) 法は, 対人攻撃に対して有効であるが, 異なるクラス間での精度と頑健さの相違が激しい。
本稿では,頑健な公正性問題に対処するために,BAT(Adversarial Training)を提案する。
論文 参考訳(メタデータ) (2022-09-15T14:44:48Z) - How Robust is Your Fairness? Evaluating and Sustaining Fairness under
Unseen Distribution Shifts [107.72786199113183]
CUMA(CUrvature Matching)と呼ばれる新しいフェアネス学習手法を提案する。
CUMAは、未知の分布シフトを持つ未知の領域に一般化可能な頑健な公正性を達成する。
提案手法を3つの人気フェアネスデータセットで評価する。
論文 参考訳(メタデータ) (2022-07-04T02:37:50Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - Robust Fairness under Covariate Shift [11.151913007808927]
保護グループメンバーシップに関して公正な予測を行うことは、分類アルゴリズムの重要な要件となっている。
本稿では,ターゲット性能の面で最悪のケースに対して頑健な予測値を求める手法を提案する。
論文 参考訳(メタデータ) (2020-10-11T04:42:01Z) - A Distributionally Robust Approach to Fair Classification [17.759493152879013]
本研究では、性別や民族などのセンシティブな属性に対する差別を防止する不公平なペナルティを持つロジスティックなロジスティック回帰モデルを提案する。
このモデルは、トレーニングデータ上の経験的分布を中心とするワッサーシュタイン球が分布の不確かさのモデル化に使用される場合、トラクタブル凸最適化問題と等価である。
得られた分類器は, 合成データセットと実データセットの両方において, 予測精度の限界損失による公平性の向上を実証する。
論文 参考訳(メタデータ) (2020-07-18T22:34:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。