論文の概要: A Distributionally Robust Approach to Fair Classification
- arxiv url: http://arxiv.org/abs/2007.09530v1
- Date: Sat, 18 Jul 2020 22:34:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 05:14:52.318185
- Title: A Distributionally Robust Approach to Fair Classification
- Title(参考訳): 公平な分類に対する分布的ロバストなアプローチ
- Authors: Bahar Taskesen and Viet Anh Nguyen and Daniel Kuhn and Jose Blanchet
- Abstract要約: 本研究では、性別や民族などのセンシティブな属性に対する差別を防止する不公平なペナルティを持つロジスティックなロジスティック回帰モデルを提案する。
このモデルは、トレーニングデータ上の経験的分布を中心とするワッサーシュタイン球が分布の不確かさのモデル化に使用される場合、トラクタブル凸最適化問題と等価である。
得られた分類器は, 合成データセットと実データセットの両方において, 予測精度の限界損失による公平性の向上を実証する。
- 参考スコア(独自算出の注目度): 17.759493152879013
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a distributionally robust logistic regression model with an
unfairness penalty that prevents discrimination with respect to sensitive
attributes such as gender or ethnicity. This model is equivalent to a tractable
convex optimization problem if a Wasserstein ball centered at the empirical
distribution on the training data is used to model distributional uncertainty
and if a new convex unfairness measure is used to incentivize equalized
opportunities. We demonstrate that the resulting classifier improves fairness
at a marginal loss of predictive accuracy on both synthetic and real datasets.
We also derive linear programming-based confidence bounds on the level of
unfairness of any pre-trained classifier by leveraging techniques from optimal
uncertainty quantification over Wasserstein balls.
- Abstract(参考訳): 本研究では,性別や民族性などの繊細な属性に対する差別を防止する不公平性ペナルティを伴う分布的ロジスティック回帰モデルを提案する。
このモデルは、トレーニングデータに経験分布を中心とするワッサースタイン球を用いて分布の不確かさをモデル化し、また、新たな凸不公平性尺度を用いて等化機会をインセンティブ化した場合、可搬凸最適化問題と同値である。
得られた分類器は, 合成データセットと実データセットの両方において, 予測精度の限界損失による公平性の向上を実証する。
また,ワッサースタイン球上の最適不確実性定量化の手法を活用し,事前学習された分類器の不公平性レベルに対する線形計画に基づく信頼度境界を導出する。
関連論文リスト
- Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - SimPro: A Simple Probabilistic Framework Towards Realistic Long-Tailed Semi-Supervised Learning [49.94607673097326]
ラベルなしデータの分散に関する前提を前提としない、高度に適応可能なフレームワークをSimProとして提案する。
我々のフレームワークは確率モデルに基づいており、期待最大化アルゴリズムを革新的に洗練する。
本手法は,様々なベンチマークやデータ分散シナリオにまたがる一貫した最先端性能を示す。
論文 参考訳(メタデータ) (2024-02-21T03:39:04Z) - Dr. FERMI: A Stochastic Distributionally Robust Fair Empirical Risk
Minimization Framework [12.734559823650887]
分散シフトが存在する場合、公正な機械学習モデルはテストデータに対して不公平に振る舞うことがある。
既存のアルゴリズムはデータへの完全なアクセスを必要とし、小さなバッチを使用する場合には使用できない。
本稿では,因果グラフの知識を必要としない収束保証付き分布安定度フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-20T23:25:28Z) - Variational Classification [51.2541371924591]
我々は,変分オートエンコーダの訓練に用いるエビデンスローバウンド(ELBO)に類似した,モデルの訓練を目的とした変分目的を導出する。
軟質マックス層への入力を潜伏変数のサンプルとして扱うことで, 抽象化された視点から, 潜在的な矛盾が明らかとなった。
我々は、標準ソフトマックス層に見られる暗黙の仮定の代わりに、選択された潜在分布を誘導する。
論文 参考訳(メタデータ) (2023-05-17T17:47:19Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
まず,分布シフト,データ摂動,モデルウェイト摂動の関連性を理論的に検証した。
次に、ターゲットデータセットの公平性を保証するのに十分な条件を分析します。
これらの十分な条件により、ロバストフェアネス正則化(RFR)を提案する。
論文 参考訳(メタデータ) (2023-03-06T17:19:23Z) - Theoretical characterization of uncertainty in high-dimensional linear
classification [24.073221004661427]
本研究では,高次元入力データとラベルの限られたサンプル数から学習する不確実性が,近似メッセージパッシングアルゴリズムによって得られることを示す。
我々は,信頼度を適切に正則化することで緩和する方法について論じるとともに,損失に対するクロスバリデーションが0/1誤差よりもキャリブレーションが優れていることを示す。
論文 参考訳(メタデータ) (2022-02-07T15:32:07Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
階層型モデル選択は、推定困難のため、ディープラーニングではほとんど使われない。
本研究は,検証データが利用できない場合,限界的可能性によって一般化が向上し,有用であることを示す。
論文 参考訳(メタデータ) (2021-04-11T09:50:24Z) - Wasserstein Robust Support Vector Machines with Fairness Constraints [15.004754864933705]
我々は分布の不確かさをモデル化するために経験的分布を中心とするタイプ$infty$ wasserstein ambiguityセットを用いる。
提案手法は,予測精度の損なうことなく,公平性を向上することを示す。
論文 参考訳(メタデータ) (2021-03-11T17:53:54Z) - Ensuring Fairness Beyond the Training Data [22.284777913437182]
トレーニング分布と摂動のクラスに対して公平な分類器を開発する。
オンライン学習アルゴリズムに基づいて、公正で堅牢な解に収束する反復アルゴリズムを開発する。
実験の結果, 正当性と正当性との間には, 本質的にトレードオフがあることが判明した。
論文 参考訳(メタデータ) (2020-07-12T16:20:28Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Fair Regression with Wasserstein Barycenters [39.818025466204055]
本稿では, 実数値関数を学習し, 実数値関数の制約を満たす問題について検討する。
予測された出力の分布は、センシティブな属性から独立することを要求する。
フェア回帰と最適輸送理論の関連性を確立し、最適なフェア予測器に対するクローズドフォーム表現を導出する。
論文 参考訳(メタデータ) (2020-06-12T16:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。