論文の概要: Fair Class-Incremental Learning using Sample Weighting
- arxiv url: http://arxiv.org/abs/2410.01324v1
- Date: Wed, 2 Oct 2024 08:32:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 21:49:06.898624
- Title: Fair Class-Incremental Learning using Sample Weighting
- Title(参考訳): サンプル重み付けによる公平なクラスインクリメンタル学習
- Authors: Jaeyoung Park, Minsu Kim, Steven Euijong Whang,
- Abstract要約: 本研究は,現在行われている課題のすべてのサンプルを鼻で使用することにより,クラスを含む特定のセンシティブなグループに対して不当な破滅的忘れを生じさせることを示す。
平均勾配ベクトルの方向を変えるために,現在のタスクサンプルのトレーニング重みを調整する,公平なクラス増分学習フレームワークを提案する。
実験により、FSWは実際のデータセットに対する最先端のアプローチよりも精度・公正なトレードオフ結果が得られることが示された。
- 参考スコア(独自算出の注目度): 27.82760149957115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model fairness is becoming important in class-incremental learning for Trustworthy AI. While accuracy has been a central focus in class-incremental learning, fairness has been relatively understudied. However, naively using all the samples of the current task for training results in unfair catastrophic forgetting for certain sensitive groups including classes. We theoretically analyze that forgetting occurs if the average gradient vector of the current task data is in an "opposite direction" compared to the average gradient vector of a sensitive group, which means their inner products are negative. We then propose a fair class-incremental learning framework that adjusts the training weights of current task samples to change the direction of the average gradient vector and thus reduce the forgetting of underperforming groups and achieve fairness. For various group fairness measures, we formulate optimization problems to minimize the overall losses of sensitive groups while minimizing the disparities among them. We also show the problems can be solved with linear programming and propose an efficient Fairness-aware Sample Weighting (FSW) algorithm. Experiments show that FSW achieves better accuracy-fairness tradeoff results than state-of-the-art approaches on real datasets.
- Abstract(参考訳): 信頼に値するAIのためのクラスインクリメンタル学習において、モデルフェアネスが重要になりつつある。
正確性は、クラス増分学習において中心的な焦点となっているが、公平性は比較的研究されている。
しかし、現在の課題のすべてのサンプルを鼻で使用することで、クラスを含む特定のセンシティブなグループに対して不公平な破滅的な忘れを生じさせる。
理論的には、現在のタスクデータの平均勾配ベクトルが、センシティブなグループの平均勾配ベクトルと比較して「正の方向」である場合、その内部積が負となる。
そこで本研究では,現在のタスクサンプルのトレーニング重みを調整し,平均勾配ベクトルの方向を変えるための公平なクラス増分学習フレームワークを提案する。
グループフェアネス対策の多種多様さに対して、各グループ間の差異を最小化しつつ、センシティブなグループ全体の損失を最小化するために最適化問題を定式化する。
また,線形プログラミングで解ける問題を示し,Fairness-aware Sample Weighting (FSW)アルゴリズムを提案する。
実験により、FSWは実際のデータセットに対する最先端のアプローチよりも精度・公正なトレードオフ結果が得られることが示された。
関連論文リスト
- Boosting Fair Classifier Generalization through Adaptive Priority Reweighing [59.801444556074394]
より優れた一般化性を持つ性能向上フェアアルゴリズムが必要である。
本稿では,トレーニングデータとテストデータ間の分散シフトがモデル一般化性に与える影響を解消する適応的リライジング手法を提案する。
論文 参考訳(メタデータ) (2023-09-15T13:04:55Z) - Bias Amplification Enhances Minority Group Performance [10.380812738348899]
本稿では,新しい2段階学習アルゴリズムであるBAMを提案する。
第1段階では、各トレーニングサンプルに対して学習可能な補助変数を導入することにより、バイアス増幅方式を用いてモデルを訓練する。
第2段階では、バイアス増幅モデルが誤分類したサンプルを重み付けし、その後、再重み付けされたデータセット上で同じモデルをトレーニングし続けます。
論文 参考訳(メタデータ) (2023-09-13T04:40:08Z) - Fair Few-shot Learning with Auxiliary Sets [53.30014767684218]
多くの機械学習(ML)タスクでは、ラベル付きデータサンプルしか収集できないため、フェアネスのパフォーマンスが低下する可能性がある。
本稿では,限定的なトレーニングサンプルを用いたフェアネス認識学習課題をemphfair few-shot Learning問題として定義する。
そこで我々は,学習した知識をメタテストタスクに一般化し,様々なメタトレーニングタスクに公平な知識を蓄積する新しいフレームワークを考案した。
論文 参考訳(メタデータ) (2023-08-28T06:31:37Z) - FairAdaBN: Mitigating unfairness with adaptive batch normalization and
its application to dermatological disease classification [14.589159162086926]
バッチ正規化をセンシティブ属性に適応させるFairAdaBNを提案する。
本研究では,FATE(Fairness-Accuracy Trade-off efficiency)と呼ばれる新しい指標を提案する。
2つの皮膚科学データセットを用いた実験により,提案手法はフェアネス基準とFATEの他の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-03-15T02:22:07Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
まず,分布シフト,データ摂動,モデルウェイト摂動の関連性を理論的に検証した。
次に、ターゲットデータセットの公平性を保証するのに十分な条件を分析します。
これらの十分な条件により、ロバストフェアネス正則化(RFR)を提案する。
論文 参考訳(メタデータ) (2023-03-06T17:19:23Z) - Fair and Optimal Classification via Post-Processing [10.163721748735801]
本稿では、分類問題における人口統計学の特質的トレードオフの完全な評価について述べる。
ランダム化および属性認識フェア分類器によって達成可能な最小誤差率は、ワッサーシュタイン・バリセンタ問題の最適値によって与えられることを示す。
論文 参考訳(メタデータ) (2022-11-03T00:04:04Z) - FairIF: Boosting Fairness in Deep Learning via Influence Functions with
Validation Set Sensitive Attributes [51.02407217197623]
本稿では,FAIRIFという2段階の学習アルゴリズムを提案する。
サンプル重みが計算される再重み付きデータセットの損失を最小限に抑える。
FAIRIFは、様々な種類のバイアスに対して、フェアネスとユーティリティのトレードオフを良くしたモデルが得られることを示す。
論文 参考訳(メタデータ) (2022-01-15T05:14:48Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - Fairness Constraints in Semi-supervised Learning [56.48626493765908]
我々は,最適化問題として定式化された,公平な半教師付き学習のためのフレームワークを開発する。
偏り・分散・雑音分解による半教師あり学習における識別源を理論的に分析する。
本手法は, 公平な半教師付き学習を達成でき, 公正な教師付き学習よりも精度と公平性のトレードオフが良好である。
論文 参考訳(メタデータ) (2020-09-14T04:25:59Z) - Ensuring Fairness Beyond the Training Data [22.284777913437182]
トレーニング分布と摂動のクラスに対して公平な分類器を開発する。
オンライン学習アルゴリズムに基づいて、公正で堅牢な解に収束する反復アルゴリズムを開発する。
実験の結果, 正当性と正当性との間には, 本質的にトレードオフがあることが判明した。
論文 参考訳(メタデータ) (2020-07-12T16:20:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。