論文の概要: Estimating Stochastic Poisson Intensities Using Deep Latent Models
- arxiv url: http://arxiv.org/abs/2007.06037v4
- Date: Thu, 23 Jul 2020 02:07:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 05:19:44.504519
- Title: Estimating Stochastic Poisson Intensities Using Deep Latent Models
- Title(参考訳): 深い潜伏モデルを用いた確率ポアソン強度の推定
- Authors: Ruixin Wang, Prateek Jaiwal and Harsha Honnappa
- Abstract要約: 我々は,深層ニューラルネットワークを用いた新しいシミュレーション手法を開発し,その強度過程によって引き起こされる経路測定を近似する。
シミュレーション実験により,本手法はサンプル内推定とサンプル外性能予測の両方において極めて正確であることが示された。
- 参考スコア(独自算出の注目度): 1.4961616745782307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present methodology for estimating the stochastic intensity of a doubly
stochastic Poisson process. Statistical and theoretical analyses of traffic
traces show that these processes are appropriate models of high intensity
traffic arriving at an array of service systems. The statistical estimation of
the underlying latent stochastic intensity process driving the traffic model
involves a rather complicated nonlinear filtering problem. We develop a novel
simulation methodology, using deep neural networks to approximate the path
measures induced by the stochastic intensity process, for solving this
nonlinear filtering problem. Our simulation studies demonstrate that the method
is quite accurate on both in-sample estimation and on an out-of-sample
performance prediction task for an infinite server queue.
- Abstract(参考訳): 二重確率ポアソン過程の確率強度を推定する手法を提案する。
トラフィックトレースの統計的および理論的分析は、これらのプロセスが一連のサービスシステムに到達した高密度トラフィックの適切なモデルであることを示している。
トラヒックモデルを駆動する潜在確率的強度過程の統計的推定は、かなり複雑な非線形フィルタリング問題を伴う。
非線形フィルタ問題を解くために,確率的強度過程によって引き起こされる経路測度を近似するために,ディープニューラルネットワークを用いた新しいシミュレーション手法を開発した。
本手法は,インスタンス内推定と,無限サーバキューのサンプル外性能予測タスクの両方において極めて正確であることを示す。
関連論文リスト
- Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z) - Sampling with flows, diffusion and autoregressive neural networks: A
spin-glass perspective [18.278073129757466]
障害系の統計物理学において広く研究されている確率分布のクラスに焦点をあてる。
我々は,フローベース,拡散ベース,自己回帰的ネットワーク手法によるサンプリングをベイズ最適分解法の解析に等価にマッピングできるという事実を活用する。
これらの手法が効率的にサンプリングできないパラメータの領域を同定し、標準モンテカルロ法やランゲヴィン法を用いてそれを可能にする。
論文 参考訳(メタデータ) (2023-08-27T12:16:33Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
非定常データストリームから非線形関数のパラメータを推定するための効率的なオンライン近似ベイズ推定アルゴリズムを提案する。
この方法は拡張カルマンフィルタ (EKF) に基づいているが、新しい低ランク+斜角行列分解法を用いている。
変分推論に基づく手法とは対照的に,本手法は完全に決定論的であり,ステップサイズチューニングを必要としない。
論文 参考訳(メタデータ) (2023-05-31T03:48:49Z) - Efficient Training of Energy-Based Models Using Jarzynski Equality [13.636994997309307]
エネルギーベースモデル(英: Energy-based model、EBM)は、統計物理学にインスパイアされた生成モデルである。
モデルパラメータに対する勾配の計算には、モデルの分布をサンプリングする必要がある。
ここでは、ジャジンスキーの等式に基づく非平衡熱力学の結果を用いて、この計算を効率的に行う方法を示す。
論文 参考訳(メタデータ) (2023-05-30T21:07:52Z) - Towards black-box parameter estimation [0.0]
弱いパラメータ構造仮定に基づいて統計モデルのパラメータを推定する新しいブラックボックス手法を開発した。
頻繁な頻度で構造化された確率に対して、これは、広範囲なシミュレートされたデータベース上でディープニューラルネットワークを事前トレーニングすることで達成される。
論文 参考訳(メタデータ) (2023-03-27T09:39:38Z) - Deep Equilibrium Optical Flow Estimation [80.80992684796566]
最近のSOTA(State-of-the-art)光フローモデルでは、従来のアルゴリズムをエミュレートするために有限ステップの更新操作を使用する。
これらのRNNは大きな計算とメモリオーバーヘッドを課し、そのような安定した推定をモデル化するために直接訓練されていない。
暗黙的層の無限レベル固定点として直接流れを解く手法として,Deep equilibrium Flow estimatorを提案する。
論文 参考訳(メタデータ) (2022-04-18T17:53:44Z) - Learned Turbulence Modelling with Differentiable Fluid Solvers [23.535052848123932]
我々は畳み込みニューラルネットワークに基づいて乱流モデルを訓練する。
これらのモデルは、シミュレーション時に非圧縮性ナビエ・ストークス方程式に対する未解決の低分解能解を改善する。
論文 参考訳(メタデータ) (2022-02-14T19:03:01Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - Neural Networks for Parameter Estimation in Intractable Models [0.0]
本稿では,最大安定過程からパラメータを推定する方法を示す。
モデルシミュレーションのデータを入力として使用し,統計的パラメータを学習するために深層ニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2021-07-29T21:59:48Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
二進的アクティベーションや二進的重みを持つニューラルネットワークでは、勾配降下によるトレーニングは複雑である。
そこで本研究では,サンプリングと解析近似を併用した新しい推定法を提案する。
勾配推定において高い精度を示し、深部畳み込みモデルにおいてより安定かつ優れた訓練を行うことを示す。
論文 参考訳(メタデータ) (2020-06-04T21:51:21Z) - TraDE: Transformers for Density Estimation [101.20137732920718]
TraDEは自己回帰密度推定のための自己アテンションに基づくアーキテクチャである。
本稿では, 生成したサンプルを用いた回帰, 分布外検出, トレーニングデータにおける雑音に対する頑健性などのタスクについて述べる。
論文 参考訳(メタデータ) (2020-04-06T07:32:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。