論文の概要: Learning to associate detections for real-time multiple object tracking
- arxiv url: http://arxiv.org/abs/2007.06041v1
- Date: Sun, 12 Jul 2020 17:08:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 05:56:07.933992
- Title: Learning to associate detections for real-time multiple object tracking
- Title(参考訳): リアルタイム複数物体追跡のための相関検出学習
- Authors: Michel Meneses, Leonardo Matos, Bruno Prado, Andr\'e de Carvalho and
Hendrik Macedo
- Abstract要約: 本研究では, ニューラルネットワークを用いて, 検出に使用可能な類似性関数を学習する。
提案したトラッカーは最先端の手法で得られた結果と一致し、ベースラインとして使用される最近の類似手法よりも58%高速に動作している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the recent advances in the object detection research field,
tracking-by-detection has become the leading paradigm adopted by multi-object
tracking algorithms. By extracting different features from detected objects,
those algorithms can estimate the objects' similarities and association
patterns along successive frames. However, since similarity functions applied
by tracking algorithms are handcrafted, it is difficult to employ them in new
contexts. In this study, it is investigated the use of artificial neural
networks to learning a similarity function that can be used among detections.
During training, the networks were introduced to correct and incorrect
association patterns, sampled from a pedestrian tracking data set. For such,
different motion and appearance features combinations have been explored.
Finally, a trained network has been inserted into a multiple-object tracking
framework, which has been assessed on the MOT Challenge benchmark. Throughout
the experiments, the proposed tracker matched the results obtained by
state-of-the-art methods, it has run 58\% faster than a recent and similar
method, used as baseline.
- Abstract(参考訳): 近年のオブジェクト検出研究の進歩により、多目的追跡アルゴリズムが採用する主要なパラダイムとなっている。
検出されたオブジェクトから異なる特徴を抽出することにより、それらのアルゴリズムは連続したフレームに沿ってオブジェクトの類似性と関連パターンを推定することができる。
しかし,追跡アルゴリズムが適用した類似性関数は手作りであるため,新しい文脈での活用は困難である。
本研究では,ニューラルネットワークを用いた類似度関数の学習について検討した。
トレーニング中のネットワークは、歩行者追跡データセットからサンプリングされた、正確で不正な関連パターンに対して導入された。
そのため、異なる動きと外観の組み合わせが検討されている。
最後に、トレーニングされたネットワークを複数オブジェクト追跡フレームワークに挿入し、MOT Challengeベンチマークで評価した。
実験を通して,提案手法は最先端の手法で得られた結果と一致し,ベースラインとして使用される最近および類似の手法よりも58\%高速に動作した。
関連論文リスト
- SeMoLi: What Moves Together Belongs Together [51.72754014130369]
動作手がかりに基づく半教師付き物体検出に挑戦する。
近年,移動物体の擬似ラベルインスタンスに対して,動きに基づくクラスタリング手法が適用可能であることが示唆された。
我々は、このアプローチを再考し、オブジェクト検出とモーションインスパイアされた擬似ラベルの両方が、データ駆動方式で取り組めることを示唆する。
論文 参考訳(メタデータ) (2024-02-29T18:54:53Z) - Single-Shot and Multi-Shot Feature Learning for Multi-Object Tracking [55.13878429987136]
そこで本研究では,異なる目標に対して,単発と複数発の特徴を共同で学習するための,シンプルで効果的な2段階特徴学習パラダイムを提案する。
提案手法は,DanceTrackデータセットの最先端性能を達成しつつ,MOT17およびMOT20データセットの大幅な改善を実現している。
論文 参考訳(メタデータ) (2023-11-17T08:17:49Z) - Spatio-Temporal Point Process for Multiple Object Tracking [30.041104276095624]
多重オブジェクト追跡(MOT)は、連続するフレーム間の検出対象の関係をモデル化し、それらを異なる軌道にマージすることに焦点を当てている。
本稿では,物体を軌道に関連付ける前に,ノイズを効果的に予測し,マスクアウトし,検出結果を混乱させる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-05T18:14:08Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
本稿では,3次元点雲における複数物体の同時検出と追跡手法を提案する。
本モデルでは,複数のフレームを用いた時間情報を利用してオブジェクトを検出し,一つのネットワーク上で追跡する。
論文 参考訳(メタデータ) (2022-11-01T20:59:38Z) - QDTrack: Quasi-Dense Similarity Learning for Appearance-Only Multiple
Object Tracking [73.52284039530261]
本稿では,コントラスト学習のために,画像上に数百のオブジェクト領域を密集した擬似Dense類似性学習を提案する。
得られた特徴空間は、オブジェクトアソシエーションの推論時間において、単純な近接探索を許容する。
我々の類似性学習方式は,ビデオデータに限らず,静的入力でも有効なインスタンス類似性を学ぶことができることを示す。
論文 参考訳(メタデータ) (2022-10-12T15:47:36Z) - A Bayesian Detect to Track System for Robust Visual Object Tracking and
Semi-Supervised Model Learning [1.7268829007643391]
ニューラルネットワークの出力によってパラメータ化されたベイズ追跡・検出フレームワークにおける副次的問題について述べる。
本稿では,粒子フィルタを用いた物体状態推定のための近似サンプリングアルゴリズムを提案する。
粒子フィルタ推論アルゴリズムを用いて,間欠的なラベル付きフレーム上でのトラッキングネットワークの学習に半教師付き学習アルゴリズムを用いる。
論文 参考訳(メタデータ) (2022-05-05T00:18:57Z) - STURE: Spatial-Temporal Mutual Representation Learning for Robust Data
Association in Online Multi-Object Tracking [7.562844934117318]
提案手法は、より区別された検出とシーケンス表現を抽出することができる。
パブリックMOTチャレンジベンチマークに適用され、様々な最先端のオンラインMOTトラッカーとよく比較される。
論文 参考訳(メタデータ) (2022-01-18T08:52:40Z) - Deep Feature Tracker: A Novel Application for Deep Convolutional Neural
Networks [0.0]
本稿では,特徴を確実に追跡する方法を学習できる,新しい,統合されたディープラーニングベースのアプローチを提案する。
Deep-PTと呼ばれる提案ネットワークは、畳み込みニューラルネットワークの相互相関であるトラッカーネットワークで構成されている。
ネットワークは、特徴追跡データセットに特別なデータセットがないため、複数のデータセットを使用してトレーニングされている。
論文 参考訳(メタデータ) (2021-07-30T23:24:29Z) - Learning to Track with Object Permanence [61.36492084090744]
共同物体の検出と追跡のためのエンドツーエンドのトレーニング可能なアプローチを紹介します。
私たちのモデルは、合成データと実データで共同トレーニングされ、KITTIおよびMOT17データセットの最先端を上回ります。
論文 参考訳(メタデータ) (2021-03-26T04:43:04Z) - CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus [62.86856923633923]
我々は,同じ形状の複数のパラメトリックモデルを雑音測定に適合させる頑健な推定器を提案する。
複数のモデル検出のための手作り検索戦略を利用する従来の研究とは対照的に,データから検索戦略を学習する。
探索の自己教師付き学習において,提案したアルゴリズムをマルチホログラフィー推定で評価し,最先端手法よりも優れた精度を示す。
論文 参考訳(メタデータ) (2020-01-08T17:37:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。