論文の概要: Adversarial jamming attacks and defense strategies via adaptive deep
reinforcement learning
- arxiv url: http://arxiv.org/abs/2007.06055v1
- Date: Sun, 12 Jul 2020 18:16:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 06:14:44.456887
- Title: Adversarial jamming attacks and defense strategies via adaptive deep
reinforcement learning
- Title(参考訳): 適応型深層学習による敵ジャミング攻撃と防御戦略
- Authors: Feng Wang, Chen Zhong, M. Cenk Gursoy and Senem Velipasalar
- Abstract要約: 本稿では、DRLベースの動的チャネルアクセスを行う被害者ユーザと、DRLベースの妨害攻撃を実行して被害者を妨害する攻撃者について考察する。
被害者も攻撃者もDRLエージェントであり、互いに相互作用し、モデルを再訓練し、相手の方針に適応することができる。
攻撃された被害者の精度を最大化し,その性能を評価するための3つの防衛戦略を提案する。
- 参考スコア(独自算出の注目度): 12.11027948206573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the applications of deep reinforcement learning (DRL) in wireless
communications grow, sensitivity of DRL based wireless communication strategies
against adversarial attacks has started to draw increasing attention. In order
to address such sensitivity and alleviate the resulting security concerns, we
in this paper consider a victim user that performs DRL-based dynamic channel
access, and an attacker that executes DRLbased jamming attacks to disrupt the
victim. Hence, both the victim and attacker are DRL agents and can interact
with each other, retrain their models, and adapt to opponents' policies. In
this setting, we initially develop an adversarial jamming attack policy that
aims at minimizing the accuracy of victim's decision making on dynamic channel
access. Subsequently, we devise defense strategies against such an attacker,
and propose three defense strategies, namely diversified defense with
proportional-integral-derivative (PID) control, diversified defense with an
imitation attacker, and defense via orthogonal policies. We design these
strategies to maximize the attacked victim's accuracy and evaluate their
performances.
- Abstract(参考訳): 無線通信における深層強化学習(DRL)の適用が拡大するにつれ,DRLをベースとした無線通信戦略の敵攻撃に対する感度向上が注目されている。
本稿では,DRLをベースとした動的チャネルアクセスを行う被害者ユーザと,DRLをベースとした妨害攻撃を実行して被害者を妨害する攻撃者について検討する。
したがって、被害者と攻撃者はDRLエージェントであり、互いに相互作用し、モデルを再訓練し、相手のポリシーに適応することができる。
そこで我々はまず,動的チャネルアクセスにおける被害者の判断の精度を最小化することを目的とした,対向的妨害攻撃ポリシーを開発する。
その後,攻撃者に対する防衛戦略を考案し,比例積分微分(PID)制御による多角化防衛,模倣攻撃による多角化防衛,直交方針による防衛という3つの防衛戦略を提案する。
攻撃された被害者の精度を最大化し、その性能を評価するため、これらの戦略を設計する。
関連論文リスト
- Optimizing Cyber Defense in Dynamic Active Directories through Reinforcement Learning [10.601458163651582]
本稿では,動的実世界のネットワークにおけるエッジブロッキングACO戦略の欠如に対処する。
具体的には、組織的Active Directory(AD)システムのサイバーセキュリティ脆弱性を対象とする。
ADシステムを静的エンティティとみなす、エッジブロッキング防衛に関する既存の文献とは異なり、本研究では、それらの動的性質を認識してこれに対応する。
論文 参考訳(メタデータ) (2024-06-28T01:37:46Z) - Towards Robust Policy: Enhancing Offline Reinforcement Learning with Adversarial Attacks and Defenses [19.918548094276005]
オフライン強化学習(RL)は、大量のオフラインデータに対する事前トレーニングポリシによって、RLに固有の高価でリスクの高いデータ探索の課題に対処する。
本稿では,先進的な敵攻撃と防御を活用して,オフラインRLモデルのロバスト性を高める枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-18T07:23:44Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
本稿では,相互モダリティ最適化スキームにおける敵攻撃を生成する新しい手法を提案する。
我々の手法は最先端の攻撃方法より優れており、プラグイン・アンド・プレイ・ソリューションとして容易にデプロイできる。
論文 参考訳(メタデータ) (2023-12-20T05:06:01Z) - On the Difficulty of Defending Contrastive Learning against Backdoor
Attacks [58.824074124014224]
バックドア攻撃が、特有のメカニズムによってどのように動作するかを示す。
本研究は, 対照的なバックドア攻撃の特異性に合わせて, 防御の必要性を浮き彫りにした。
論文 参考訳(メタデータ) (2023-12-14T15:54:52Z) - Optimal Attack and Defense for Reinforcement Learning [11.36770403327493]
敵RLでは、外部攻撃者は、環境との相互作用を操作できる。
我々は、攻撃者が予想される報酬を最大化するステルス攻撃を設計する際の問題を示す。
被害者に対する最適な防衛方針は,Stackelbergゲームに対する解決策として計算できる,と我々は主張する。
論文 参考訳(メタデータ) (2023-11-30T21:21:47Z) - Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial
Attacks and Training [62.77129284830945]
本稿では,無線環境における回帰問題を考察し,敵攻撃がDLベースのアプローチを損なう可能性があることを示す。
また,攻撃に対するDLベースの無線システムの堅牢性が著しく向上することを示す。
論文 参考訳(メタデータ) (2022-06-14T04:55:11Z) - Attacking and Defending Deep Reinforcement Learning Policies [3.6985039575807246]
本研究では, DRL ポリシーのロバストな最適化の観点から, 敵攻撃に対するロバスト性について検討する。
本稿では,環境との相互作用を伴わずにポリシーの戻りを最小化しようとする欲求攻撃アルゴリズムと,最大限の形式で敵の訓練を行う防衛アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-16T12:47:54Z) - Adversarial Reinforcement Learning in Dynamic Channel Access and Power
Control [13.619849476923877]
近年,無線通信における資源割当の効率化にDRL(Deep reinforcement Learning)が用いられている。
無線干渉チャネルにおける動的チャネルアクセスと電力制御の両方を実行する複数のDRLエージェントを検討する。
本稿では,聴取フェーズを利用してユーザの総和率を著しく低下させる逆ジャミング攻撃方式を提案する。
論文 参考訳(メタデータ) (2021-05-12T17:27:21Z) - Guided Adversarial Attack for Evaluating and Enhancing Adversarial
Defenses [59.58128343334556]
我々は、より適切な勾配方向を見つけ、攻撃効果を高め、より効率的な対人訓練をもたらす標準損失に緩和項を導入する。
本稿では, クリーン画像の関数マッピングを用いて, 敵生成を誘導するGAMA ( Guided Adversarial Margin Attack) を提案する。
また,一段防衛における最先端性能を実現するためのGAT ( Guided Adversarial Training) を提案する。
論文 参考訳(メタデータ) (2020-11-30T16:39:39Z) - Deflecting Adversarial Attacks [94.85315681223702]
我々は、攻撃者が攻撃対象クラスに似た入力を生成することによって、敵攻撃を「防御」するこのサイクルを終わらせる新しいアプローチを提案する。
本稿ではまず,3つの検出機構を組み合わせたカプセルネットワークに基づくより強力な防御手法を提案する。
論文 参考訳(メタデータ) (2020-02-18T06:59:13Z) - Challenges and Countermeasures for Adversarial Attacks on Deep
Reinforcement Learning [48.49658986576776]
深層強化学習(Dep Reinforcement Learning, DRL)は、周囲の環境に適応する優れた能力のおかげで、現実世界に多くの応用がある。
その大きな利点にもかかわらず、DRLは現実のクリティカルシステムやアプリケーションでの使用を妨げている敵攻撃の影響を受けやすい。
本稿では,DRLベースのシステムにおける新たな攻撃と,これらの攻撃を防御するための潜在的対策について述べる。
論文 参考訳(メタデータ) (2020-01-27T10:53:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。