論文の概要: Optimal Attack and Defense for Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2312.00198v2
- Date: Mon, 17 Jun 2024 08:13:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 09:12:15.845564
- Title: Optimal Attack and Defense for Reinforcement Learning
- Title(参考訳): 強化学習のための最適攻撃と防御
- Authors: Jeremy McMahan, Young Wu, Xiaojin Zhu, Qiaomin Xie,
- Abstract要約: 敵RLでは、外部攻撃者は、環境との相互作用を操作できる。
我々は、攻撃者が予想される報酬を最大化するステルス攻撃を設計する際の問題を示す。
被害者に対する最適な防衛方針は,Stackelbergゲームに対する解決策として計算できる,と我々は主張する。
- 参考スコア(独自算出の注目度): 11.36770403327493
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To ensure the usefulness of Reinforcement Learning (RL) in real systems, it is crucial to ensure they are robust to noise and adversarial attacks. In adversarial RL, an external attacker has the power to manipulate the victim agent's interaction with the environment. We study the full class of online manipulation attacks, which include (i) state attacks, (ii) observation attacks (which are a generalization of perceived-state attacks), (iii) action attacks, and (iv) reward attacks. We show the attacker's problem of designing a stealthy attack that maximizes its own expected reward, which often corresponds to minimizing the victim's value, is captured by a Markov Decision Process (MDP) that we call a meta-MDP since it is not the true environment but a higher level environment induced by the attacked interaction. We show that the attacker can derive optimal attacks by planning in polynomial time or learning with polynomial sample complexity using standard RL techniques. We argue that the optimal defense policy for the victim can be computed as the solution to a stochastic Stackelberg game, which can be further simplified into a partially-observable turn-based stochastic game (POTBSG). Neither the attacker nor the victim would benefit from deviating from their respective optimal policies, thus such solutions are truly robust. Although the defense problem is NP-hard, we show that optimal Markovian defenses can be computed (learned) in polynomial time (sample complexity) in many scenarios.
- Abstract(参考訳): 実システムにおける強化学習(Reinforcement Learning, RL)の有用性を確保するためには, 騒音や敵攻撃に対して堅牢であることを保証することが重要である。
敵RLでは、外部攻撃者は、環境との相互作用を操作できる。
我々は、オンライン操作攻撃の全クラスについて研究する。
(i)国家攻撃
(二 観測攻撃(認識状態攻撃の一般化)
(三)攻撃、及び
(4)報酬攻撃。
我々は,攻撃者の期待する報酬を最大化できるステルスシー攻撃を設計する際の問題点を,攻撃された相互作用によって引き起こされる真の環境ではなく,より高いレベルの環境をメタMDPと呼ぶマルコフ決定プロセス(MDP)によって捉えた。
攻撃者は、多項式時間で計画したり、標準RL手法を用いて多項式サンプルの複雑さを学習することで、最適な攻撃を導出できることを示す。
我々は,被害者に対する最適な防衛方針を,部分的に観測可能なターンベース確率ゲーム(POTBSG)にさらに単純化できる確率的スタックルバーグゲーム(英語版)の解として計算できると主張している。
攻撃者も被害者も、それぞれの最適なポリシーから逸脱する恩恵を受けないため、そのような解決策は真に堅牢である。
防御問題はNPハードであるが,多くのシナリオにおいて,最適マルコフディフェンスを多項式時間(サンプル複雑性)で計算(学習)できることを示す。
関連論文リスト
- Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
現在の防衛は主に既知の攻撃に焦点を当てているが、未知の攻撃に対する敵意の強固さは見過ごされている。
メタ不変防衛(Meta Invariance Defense, MID)と呼ばれる攻撃非依存の防御手法を提案する。
MIDは高レベルの画像分類と低レベルの頑健な画像再生における攻撃抑制において,知覚不能な逆方向の摂動に対して同時に頑健性を実現する。
論文 参考訳(メタデータ) (2024-04-04T10:10:38Z) - Securing Recommender System via Cooperative Training [78.97620275467733]
本稿では,データを相互に強化する3つの協調モデルを用いたTCD(Triple Cooperative Defense)を提案する。
既存の攻撃が二段階最適化と効率のバランスをとるのに苦労していることを考えると、リコメンダシステムにおける毒殺攻撃を再考する。
我々はゲームベースのコトレーニングアタック(GCoAttack)を提案し,提案したCoAttackとTCDをゲーム理論のプロセスとする。
論文 参考訳(メタデータ) (2024-01-23T12:07:20Z) - Optimal Cost Constrained Adversarial Attacks For Multiple Agent Systems [6.69087470775851]
分散攻撃エージェントを用いた最適な敵エージェント対エージェント攻撃を行うという問題を定式化する。
そこで本稿では,静的制約付き攻撃-リソース割り当て最適化と動的プログラミングの段階間最適化を組み合わせた最適手法を提案する。
以上の結果から,攻撃エージェントが受ける報酬を大幅に削減できる可能性が示唆された。
論文 参考訳(メタデータ) (2023-11-01T21:28:02Z) - Planning for Attacker Entrapment in Adversarial Settings [16.085007590604327]
本研究では,攻撃者の知識を使わずに攻撃者が操作できる環境で作業している攻撃者に対する防衛戦略を生成する枠組みを提案する。
この問題の定式化により、より単純な無限地平線割引MDPとして捉えることができ、MDPの最適方針は、攻撃者の行動に対するディフェンダーの戦略を与える。
論文 参考訳(メタデータ) (2023-03-01T21:08:27Z) - Guidance Through Surrogate: Towards a Generic Diagnostic Attack [101.36906370355435]
我々は、攻撃最適化中に局所最小限を避けるための誘導機構を開発し、G-PGAと呼ばれる新たな攻撃に繋がる。
修正された攻撃では、ランダムに再起動したり、多数の攻撃を繰り返したり、最適なステップサイズを検索したりする必要がありません。
効果的な攻撃以上に、G-PGAは敵防御における勾配マスキングによる解離性堅牢性を明らかにするための診断ツールとして用いられる。
論文 参考訳(メタデータ) (2022-12-30T18:45:23Z) - Sampling Attacks on Meta Reinforcement Learning: A Minimax Formulation
and Complexity Analysis [20.11993437283895]
本稿では,この種のセキュリティリスクを理解するためのゲーム理論的基盤を提供する。
我々は、サンプリング攻撃モデルを、攻撃者とエージェントの間のスタックルバーグゲームとして定義し、最小限の定式化をもたらす。
我々は,攻撃者の小さな努力が学習性能を著しく低下させる可能性があることを観察した。
論文 参考訳(メタデータ) (2022-07-29T21:29:29Z) - Attacking and Defending Deep Reinforcement Learning Policies [3.6985039575807246]
本研究では, DRL ポリシーのロバストな最適化の観点から, 敵攻撃に対するロバスト性について検討する。
本稿では,環境との相互作用を伴わずにポリシーの戻りを最小化しようとする欲求攻撃アルゴリズムと,最大限の形式で敵の訓練を行う防衛アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-16T12:47:54Z) - Projective Ranking-based GNN Evasion Attacks [52.85890533994233]
グラフニューラルネットワーク(GNN)は、グラフ関連のタスクに対して、有望な学習方法を提供する。
GNNは敵の攻撃の危険にさらされている。
論文 参考訳(メタデータ) (2022-02-25T21:52:09Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
ネットワーク分類器に対するブラックボックス攻撃について検討する。
我々は、アタッカー・ディフェンダーの固定点がそれ自体、複雑な位相遷移を持つ一般サムゲームであると主張する。
攻撃防御力学の研究には連続的な学習手法が必要であることを示す。
論文 参考訳(メタデータ) (2021-11-23T23:42:16Z) - Composite Adversarial Attacks [57.293211764569996]
敵対攻撃は、機械学習(ML)モデルを欺くための技術です。
本論文では,攻撃アルゴリズムの最適組み合わせを自動的に探索するための複合攻撃法(Composite Adrial Attack,CAA)を提案する。
CAAは11の防衛でトップ10の攻撃を破り、時間の経過は少ない。
論文 参考訳(メタデータ) (2020-12-10T03:21:16Z) - Policy Teaching via Environment Poisoning: Training-time Adversarial
Attacks against Reinforcement Learning [33.41280432984183]
本研究では,攻撃者が学習環境を害してエージェントに目標ポリシーの実行を強制する強化学習に対するセキュリティ上の脅威について検討する。
被害者として、未報告の無限水平問題設定における平均報酬を最大化するポリシーを見つけることを目的としたRLエージェントを考える。
論文 参考訳(メタデータ) (2020-03-28T23:22:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。