BaCOUn: Bayesian Classifers with Out-of-Distribution Uncertainty
- URL: http://arxiv.org/abs/2007.06096v1
- Date: Sun, 12 Jul 2020 20:52:55 GMT
- Title: BaCOUn: Bayesian Classifers with Out-of-Distribution Uncertainty
- Authors: Th\'eo Gu\'enais, Dimitris Vamvourellis, Yaniv Yacoby, Finale
Doshi-Velez, Weiwei Pan
- Abstract summary: We propose a Bayesian framework to obtain reliable uncertainty estimates for deep classifiers.
Our approach consists of a plug-in "generator" used to augment the data with an additional class of points that lie on the boundary of the training data, followed by Bayesian inference on top of features that are trained to distinguish these "out-of-distribution" points.
- Score: 23.100727871427367
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional training of deep classifiers yields overconfident models that are
not reliable under dataset shift. We propose a Bayesian framework to obtain
reliable uncertainty estimates for deep classifiers. Our approach consists of a
plug-in "generator" used to augment the data with an additional class of points
that lie on the boundary of the training data, followed by Bayesian inference
on top of features that are trained to distinguish these "out-of-distribution"
points.
Related papers
- Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
segmentation models can be vulnerable to adversarial perturbations, which hinders their use in critical-decision systems like healthcare or autonomous driving.
Recently, randomized smoothing has been proposed to certify segmentation predictions by adding Gaussian noise to the input to obtain theoretical guarantees.
In this paper, we address the problem of certifying segmentation prediction using a combination of randomized smoothing and diffusion models.
arXiv Detail & Related papers (2023-06-16T16:30:39Z) - Bayesian Quantification with Black-Box Estimators [1.599072005190786]
Approaches like adjusted classify and count, black-box shift estimators, and invariant ratio estimators use an auxiliary (and potentially biased) black-box classifier to estimate the class distribution and yield guarantees under weak assumptions.
We demonstrate that all these algorithms are closely related to the inference in a particular Bayesian Chain model, approxing the assumed ground-truthgenerative process.
Then, we discuss an efficient Markov Monte Carlo sampling scheme for the introduced model and show an consistency guarantee in the large-data limit.
arXiv Detail & Related papers (2023-02-17T22:10:04Z) - Do Bayesian Variational Autoencoders Know What They Don't Know? [0.6091702876917279]
The problem of detecting the Out-of-Distribution (OoD) inputs is paramount importance for Deep Neural Networks.
It has been previously shown that even Deep Generative Models that allow estimating the density of the inputs may not be reliable.
This paper investigates three approaches to inference: Markov chain Monte Carlo, Bayes gradient by Backpropagation and Weight Averaging-Gaussian.
arXiv Detail & Related papers (2022-12-29T11:48:01Z) - BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen
Neural Networks [50.15201777970128]
We propose BayesCap that learns a Bayesian identity mapping for the frozen model, allowing uncertainty estimation.
BayesCap is a memory-efficient method that can be trained on a small fraction of the original dataset.
We show the efficacy of our method on a wide variety of tasks with a diverse set of architectures.
arXiv Detail & Related papers (2022-07-14T12:50:09Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
We propose a novel class of deep predictors for classifying metric data on graphs within PAC-Bayes risk certification paradigm.
Building on the recent PAC-Bayes literature and data-dependent priors, this approach enables learning posterior distributions on the hypothesis space.
arXiv Detail & Related papers (2022-01-26T19:59:14Z) - Transformers Can Do Bayesian Inference [56.99390658880008]
We present Prior-Data Fitted Networks (PFNs)
PFNs leverage in-context learning in large-scale machine learning techniques to approximate a large set of posteriors.
We demonstrate that PFNs can near-perfectly mimic Gaussian processes and also enable efficient Bayesian inference for intractable problems.
arXiv Detail & Related papers (2021-12-20T13:07:39Z) - Certifying Confidence via Randomized Smoothing [151.67113334248464]
Randomized smoothing has been shown to provide good certified-robustness guarantees for high-dimensional classification problems.
Most smoothing methods do not give us any information about the confidence with which the underlying classifier makes a prediction.
We propose a method to generate certified radii for the prediction confidence of the smoothed classifier.
arXiv Detail & Related papers (2020-09-17T04:37:26Z) - $\beta$-Cores: Robust Large-Scale Bayesian Data Summarization in the
Presence of Outliers [14.918826474979587]
The quality of classic Bayesian inference depends critically on whether observations conform with the assumed data generating model.
We propose a variational inference method that, in a principled way, can simultaneously scale to large datasets.
We illustrate the applicability of our approach in diverse simulated and real datasets, and various statistical models.
arXiv Detail & Related papers (2020-08-31T13:47:12Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.