A unified machine learning approach to time series forecasting applied
to demand at emergency departments
- URL: http://arxiv.org/abs/2007.06566v1
- Date: Mon, 13 Jul 2020 07:59:24 GMT
- Title: A unified machine learning approach to time series forecasting applied
to demand at emergency departments
- Authors: Michaela A. C. Vollmer, Ben Glampson, Thomas A. Mellan, Swapnil
Mishra, Luca Mercuri, Ceire Costello, Robert Klaber, Graham Cooke, Seth
Flaxman, Samir Bhatt
- Abstract summary: There were 25.6 million attendances at Emergency Departments (EDs) in England in 2019 corresponding to an increase of 12 million attendances over the past ten years.
We develop a novel ensemble methodology that combines the outcomes of the best performing time series and machine learning approaches.
Our approach is able to predict attendances one day in advance up to a mean absolute error of +/- 14 and +/- 10 patients corresponding to a mean absolute percentage error of 6.8% and 8.6% respectively.
- Score: 1.7119367122421556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There were 25.6 million attendances at Emergency Departments (EDs) in England
in 2019 corresponding to an increase of 12 million attendances over the past
ten years. The steadily rising demand at EDs creates a constant challenge to
provide adequate quality of care while maintaining standards and productivity.
Managing hospital demand effectively requires an adequate knowledge of the
future rate of admission. Using 8 years of electronic admissions data from two
major acute care hospitals in London, we develop a novel ensemble methodology
that combines the outcomes of the best performing time series and machine
learning approaches in order to make highly accurate forecasts of demand, 1, 3
and 7 days in the future. Both hospitals face an average daily demand of 208
and 106 attendances respectively and experience considerable volatility around
this mean. However, our approach is able to predict attendances at these
emergency departments one day in advance up to a mean absolute error of +/- 14
and +/- 10 patients corresponding to a mean absolute percentage error of 6.8%
and 8.6% respectively. Our analysis compares machine learning algorithms to
more traditional linear models. We find that linear models often outperform
machine learning methods and that the quality of our predictions for any of the
forecasting horizons of 1, 3 or 7 days are comparable as measured in MAE. In
addition to comparing and combining state-of-the-art forecasting methods to
predict hospital demand, we consider two different hyperparameter tuning
methods, enabling a faster deployment of our models without compromising
performance. We believe our framework can readily be used to forecast a wide
range of policy relevant indicators.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Enhancing Uncertain Demand Prediction in Hospitals Using Simple and Advanced Machine Learning [3.9054437595657534]
Using patient care demand data from Rambam Medical Center in Israel, our results show that both proposed models effectively capture hourly variations of patient demand.
It is possible to predict patient care demand with good accuracy (around 4 patients) three days or a week in advance using machine learning.
arXiv Detail & Related papers (2024-04-29T13:05:59Z) - Forecasting Emergency Department Crowding with Advanced Machine Learning
Models and Multivariable Input [8.294560133196807]
Emergency department (ED) crowding is a significant threat to patient safety and it has been repeatedly associated with increased mortality.
Despite active research on the subject, several gaps remain: 1) proposed forecasting models have become outdated due to quick influx of advanced machine learning models (ML), 2) amount of multivariable input data has been limited and 3) discrete performance metrics have been rarely reported.
We show that N-BEATS and LightGBM outpeform benchmarks with 11 % and 9 % respective improvements and that DeepAR predicts next day crowding with an AUC of 0.76 (95 % CI 0.69-0.84)
arXiv Detail & Related papers (2023-08-31T08:34:20Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
We will assess the infrastructure required to monitor the outputs of a machine learning algorithm.
We will present two scenarios with examples of monitoring and updates of models.
arXiv Detail & Related papers (2023-03-02T17:27:45Z) - Self-Supervised Predictive Coding with Multimodal Fusion for Patient
Deterioration Prediction in Fine-grained Time Resolution [6.806410144139259]
We propose an hourly prediction method based on self-supervised predictive coding and multi-modal fusion for two critical tasks: mortality and vasopressor need prediction.
Through extensive experiments, we prove significant performance gains from both multi-modal fusion and self-supervised predictive regularization.
arXiv Detail & Related papers (2022-10-29T13:34:55Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Forecasting COVID-19 Counts At A Single Hospital: A Hierarchical
Bayesian Approach [59.318136981032]
We consider the problem of forecasting the daily number of hospitalized COVID-19 patients at a single hospital site.
We develop several candidate hierarchical Bayesian models which directly capture the count nature of data.
We demonstrate our approach on public datasets for 8 hospitals in Massachusetts, U.S.A. and 10 hospitals in the United Kingdom.
arXiv Detail & Related papers (2021-04-14T11:58:54Z) - Forecasting Emergency Department Capacity Constraints for COVID
Isolation Beds [9.358404775024109]
New COVID-related capacity constraints placed on our pediatric hospital's emergency department prompted us to develop an hourly forecasting tool.
We obtain strong performance for both point predictions and classification accuracy when predicting the ordinal tiers of our hospital's capacity.
We are currently working on moving our tool to a real-time setting with the goal of augmenting the capabilities of our healthcare workers.
arXiv Detail & Related papers (2020-11-09T19:35:41Z) - Predicting special care during the COVID-19 pandemic: A machine learning
approach [0.0]
We propose an analytical approach based on statistics and machine learning to predict whether patients are going to require special care.
We also predict the number of days the patients will stay under such care.
The analytical approach can be used in other diseases and can help the planning hospital capacity.
arXiv Detail & Related papers (2020-11-06T00:18:27Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.