Predicting special care during the COVID-19 pandemic: A machine learning
approach
- URL: http://arxiv.org/abs/2011.03143v1
- Date: Fri, 6 Nov 2020 00:18:27 GMT
- Title: Predicting special care during the COVID-19 pandemic: A machine learning
approach
- Authors: Vitor Bezzan and Cleber D. Rocco
- Abstract summary: We propose an analytical approach based on statistics and machine learning to predict whether patients are going to require special care.
We also predict the number of days the patients will stay under such care.
The analytical approach can be used in other diseases and can help the planning hospital capacity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: More than ever COVID-19 is putting pressure on health systems all around the
world, especially in Brazil. In this study we propose an analytical approach
based on statistics and machine learning that uses lab exam data coming from
patients to predict whether patients are going to require special care
(hospitalisation in regular or special-care units). We also predict the number
of days the patients will stay under such care. The two-step procedure
developed uses Bayesian Optimisation to select the best model among several
candidates leads us to final models that achieve 0.94 area under ROC curve
performance for the first target and 1.87 root mean squared error for the
second target (which is a 77% improvement over the mean baseline), making our
model ready to be deployed as a decision system that could be available for
everyone interested. The analytical approach can be used in other diseases and
can help the planning hospital capacity.
Related papers
- Deep Neural Decision Forest: A Novel Approach for Predicting Recovery or Decease of Patients [1.0874223087191939]
This study aims to examine whether deep learning algorithms can predict a patient's morality.
We investigated the impact of Clinical and RT-PCR on prediction to determine which one is more reliable.
Results indicate that Clinical alone (without the use of RT-PCR) is the most effective method of diagnosis, with an accuracy of 80%.
arXiv Detail & Related papers (2023-11-23T11:21:40Z) - A Meta-GNN approach to personalized seizure detection and classification [53.906130332172324]
We propose a personalized seizure detection and classification framework that quickly adapts to a specific patient from limited seizure samples.
We train a Meta-GNN based classifier that learns a global model from a set of training patients.
We show that our method outperforms the baselines by reaching 82.7% on accuracy and 82.08% on F1 score after only 20 iterations on new unseen patients.
arXiv Detail & Related papers (2022-11-01T14:12:58Z) - A Comprehensive Benchmark for COVID-19 Predictive Modeling Using
Electronic Health Records in Intensive Care [15.64030213048907]
We propose two clinical prediction tasks, Outcome-specific length-of-stay prediction and Early mortality prediction for COVID-19 patients in intensive care units.
The two tasks are adapted from the naive length-of-stay and mortality prediction tasks to accommodate the clinical practice for COVID-19 patients.
We propose fair, detailed, open-source data-preprocessing pipelines and evaluate 17 state-of-the-art predictive models on two tasks.
arXiv Detail & Related papers (2022-09-16T09:09:15Z) - MedML: Fusing Medical Knowledge and Machine Learning Models for Early
Pediatric COVID-19 Hospitalization and Severity Prediction [27.352097332678213]
We respond to the national Pediatric COVID-19 data challenge with a novel machine learning model, MedML.
MedML extracts the most predictive features based on medical knowledge and propensity scores from over 6 million medical concepts.
We evaluate MedML across 143,605 patients for the hospitalization prediction task and 11,465 patients for the severity prediction task.
arXiv Detail & Related papers (2022-07-25T15:56:14Z) - Developing and validating multi-modal models for mortality prediction in
COVID-19 patients: a multi-center retrospective study [1.5308395762165423]
We develop and validate multi-modal models for COVID-19 mortality prediction using multi-center patient data.
Our goal is to create a toolkit that would assist investigators and organizations in building multi-modal models for prediction, classification and/or optimization.
arXiv Detail & Related papers (2021-09-01T04:46:27Z) - Approximate Bayesian Computation for an Explicit-Duration Hidden Markov
Model of COVID-19 Hospital Trajectories [55.786207368853084]
We address the problem of modeling constrained hospital resources in the midst of the COVID-19 pandemic.
For broad applicability, we focus on the common yet challenging scenario where patient-level data for a region of interest are not available.
We propose an aggregate count explicit-duration hidden Markov model, nicknamed the ACED-HMM, with an interpretable, compact parameterization.
arXiv Detail & Related papers (2021-04-28T15:32:42Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Individualized Prediction of COVID-19 Adverse outcomes with MLHO [9.197411456718708]
We developed an end-to-end Machine Learning framework that leverages iterative feature and algorithm selection to predict Health outcomes.
We modeled the four adverse outcomes utilizing about 600 features representing patients' pre-COVID health records and demographics.
Our results demonstrated that while demographic variables are important predictors of adverse outcomes after a COVID-19 infection, the incorporation of the past clinical records are vital for a reliable prediction model.
arXiv Detail & Related papers (2020-08-10T02:44:52Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.