Momentum-Based Policy Gradient Methods
- URL: http://arxiv.org/abs/2007.06680v2
- Date: Thu, 6 Aug 2020 13:34:33 GMT
- Title: Momentum-Based Policy Gradient Methods
- Authors: Feihu Huang, Shangqian Gao, Jian Pei, Heng Huang
- Abstract summary: We propose a class of efficient momentum-based policy gradient methods for the model-free reinforcement learning.
In particular, we present a non-adaptive version of IS-MBPG method, which also reaches the best known sample complexity of $O(epsilon-3)$ without any large batches.
- Score: 133.53164856723782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the paper, we propose a class of efficient momentum-based policy gradient
methods for the model-free reinforcement learning, which use adaptive learning
rates and do not require any large batches. Specifically, we propose a fast
important-sampling momentum-based policy gradient (IS-MBPG) method based on a
new momentum-based variance reduced technique and the importance sampling
technique. We also propose a fast Hessian-aided momentum-based policy gradient
(HA-MBPG) method based on the momentum-based variance reduced technique and the
Hessian-aided technique. Moreover, we prove that both the IS-MBPG and HA-MBPG
methods reach the best known sample complexity of $O(\epsilon^{-3})$ for
finding an $\epsilon$-stationary point of the non-concave performance function,
which only require one trajectory at each iteration. In particular, we present
a non-adaptive version of IS-MBPG method, i.e., IS-MBPG*, which also reaches
the best known sample complexity of $O(\epsilon^{-3})$ without any large
batches. In the experiments, we apply four benchmark tasks to demonstrate the
effectiveness of our algorithms.
Related papers
- Policy Gradient with Active Importance Sampling [55.112959067035916]
Policy gradient (PG) methods significantly benefit from IS, enabling the effective reuse of previously collected samples.
However, IS is employed in RL as a passive tool for re-weighting historical samples.
We look for the best behavioral policy from which to collect samples to reduce the policy gradient variance.
arXiv Detail & Related papers (2024-05-09T09:08:09Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Adaptive Policy Learning to Additional Tasks [3.43814540650436]
This paper develops a policy learning method for tuning a pre-trained policy to adapt to additional tasks without altering the original task.
A method named Adaptive Policy Gradient (APG) is proposed in this paper, which combines Bellman's principle of optimality with the policy gradient approach to improve the convergence rate.
arXiv Detail & Related papers (2023-05-24T14:31:11Z) - MDPGT: Momentum-based Decentralized Policy Gradient Tracking [29.22173174168708]
We propose a momentum-based decentralized policy gradient tracking (MDPGT) for multi-agent reinforcement learning.
MDPGT achieves the best available sample complexity of $mathcalO(N-1epsilon-3)$ for converging to an $epsilon-stationary point of the global average of $N$ local performance functions.
This outperforms the state-of-the-art sample complexity in decentralized model-free reinforcement learning.
arXiv Detail & Related papers (2021-12-06T06:55:51Z) - AdaGDA: Faster Adaptive Gradient Descent Ascent Methods for Minimax
Optimization [104.96004056928474]
We propose a class of faster adaptive gradient descent methods for non-strongly-concave minimax problems.
We show that our method reaches a lower sample complexity of $O(kappa2.5epsilon-3)$ with the mini-batch size $O(kappa)$.
arXiv Detail & Related papers (2021-06-30T14:47:09Z) - Bregman Gradient Policy Optimization [97.73041344738117]
We design a Bregman gradient policy optimization for reinforcement learning based on Bregman divergences and momentum techniques.
VR-BGPO reaches the best complexity $tilde(epsilon-3)$ for finding an $epsilon$stationary point only requiring one trajectory at each iteration.
arXiv Detail & Related papers (2021-06-23T01:08:54Z) - Queueing Network Controls via Deep Reinforcement Learning [0.0]
We develop a Proximal policy optimization algorithm for queueing networks.
The algorithm consistently generates control policies that outperform state-of-arts in literature.
A key to the successes of our PPO algorithm is the use of three variance reduction techniques in estimating the relative value function.
arXiv Detail & Related papers (2020-07-31T01:02:57Z) - Zeroth-order Deterministic Policy Gradient [116.87117204825105]
We introduce Zeroth-order Deterministic Policy Gradient (ZDPG)
ZDPG approximates policy-reward gradients via two-point evaluations of the $Q$function.
New finite sample complexity bounds for ZDPG improve upon existing results by up to two orders of magnitude.
arXiv Detail & Related papers (2020-06-12T16:52:29Z) - Stochastic Recursive Momentum for Policy Gradient Methods [28.277961340108313]
We propose a novel algorithm named STOchastic Recursive Momentum for Policy Gradient (Storm-PG)
Storm-PG enjoys a provably sharp $O (1/epsilon3)$ sample bound for STORM-PG, matching the best-known convergence rate for policy gradient algorithm.
Numerical experiments depicts the superiority of our algorithm over comparative policy gradient algorithms.
arXiv Detail & Related papers (2020-03-09T17:59:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.