Quantifying Information Extraction using Generalized Quantum
Measurements
- URL: http://arxiv.org/abs/2007.07246v5
- Date: Fri, 8 Dec 2023 12:41:36 GMT
- Title: Quantifying Information Extraction using Generalized Quantum
Measurements
- Authors: Dominik \v{S}afr\'anek and Juzar Thingna
- Abstract summary: We show that the same properties hold even when considering generalized measurements.
Observational entropy is a well-defined quantifier determining how influential a given series of measurements is in information extraction.
We discuss observational entropy as a tool for quantum state inference.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Observational entropy is interpreted as the uncertainty an observer making
measurements associates with a system. So far, properties that make such an
interpretation possible rely on the assumption of ideal projective
measurements. We show that the same properties hold even when considering
generalized measurements. Thus, the interpretation still holds: Observational
entropy is a well-defined quantifier determining how influential a given series
of measurements is in information extraction. This generalized framework allows
for the study of the performance of indirect measurement schemes, which are
those using a probe. Using this framework, we first analyze the limitations of
a finite-dimensional probe. Then we study several scenarios of the von Neumann
measurement scheme, in which the probe is a classical particle characterized by
its position. Finally, we discuss observational entropy as a tool for quantum
state inference. Further developed, this framework could find applications in
quantum information processing. For example, it could help in determining the
best read-out procedures from quantum memories and to provide adaptive
measurement strategies alternative to quantum state tomography.
Related papers
- Overview of projective quantum measurements [0.0]
We make use of a unitary "Stinespring" representation of measurements on a dilated Hilbert space.
We explain how this unitary representation is guaranteed by the axioms of quantum mechanics.
arXiv Detail & Related papers (2024-04-08T16:58:19Z) - Equilibration of objective observables in a dynamical model of quantum measurements [0.0]
This paper builds on the Quantum Darwinism framework derived to explain the emergence of the classical world.
We establish a measurement error bound to quantify the probability an observer will obtain an incorrect measurement outcome.
Using this error bound, we show that the objectifying observables readily equilibrate on average under the set of Hamiltonians.
arXiv Detail & Related papers (2024-03-26T18:04:17Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Analysing quantum systems with randomised measurements [0.4179230671838898]
We present the advancements made in utilising randomised measurements in various scenarios of quantum information science.
We describe how to detect and characterise different forms of entanglement, including genuine multipartite entanglement and bound entanglement.
We also present an overview on the estimation of non-linear functions of quantum states and shadow tomography from randomised measurements.
arXiv Detail & Related papers (2023-07-03T18:00:01Z) - Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Daemonic ergotropy in continuously-monitored open quantum batteries [0.0]
daemonic ergotropy is introduced to properly describe and quantify this work extraction enhancement in the quantum regime.
We show that the corresponding daemonic ergotropy takes values between the ergotropy and the energy of the corresponding unconditional state.
The upper bound is achieved by assuming an initial pure state and a perfectly efficient projective measurement on the environment.
arXiv Detail & Related papers (2023-02-23T19:04:47Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Entanglement quasidistributions for Bell-state measurements [0.0]
We explore the notion of entanglement for detection devices in theory and experiment.
A method is devised that allows one to determine nonlocal quantum coherence of positive operator-valued measures.
We describe the reconstruction of the aforementioned entanglement quasidistributions from raw data and compare the resulting negativities with the expected from theory.
arXiv Detail & Related papers (2022-09-13T18:00:19Z) - Quantum state inference from coarse-grained descriptions: analysis and
an application to quantum thermodynamics [101.18253437732933]
We compare the Maximum Entropy Principle method, with the recently proposed Average Assignment Map method.
Despite the fact that the assigned descriptions respect the measured constraints, the descriptions differ in scenarios that go beyond the traditional system-environment structure.
arXiv Detail & Related papers (2022-05-16T19:42:24Z) - Quantum probes for universal gravity corrections [62.997667081978825]
We review the concept of minimum length and show how it induces a perturbative term appearing in the Hamiltonian of any quantum system.
We evaluate the Quantum Fisher Information in order to find the ultimate bounds to the precision of any estimation procedure.
Our results show that quantum probes are convenient resources, providing potential enhancement in precision.
arXiv Detail & Related papers (2020-02-13T19:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.