Equilibration of objective observables in a dynamical model of quantum measurements
- URL: http://arxiv.org/abs/2403.18016v1
- Date: Tue, 26 Mar 2024 18:04:17 GMT
- Title: Equilibration of objective observables in a dynamical model of quantum measurements
- Authors: Sophie Engineer, Tom Rivlin, Sabine Wollmann, Mehul Malik, Maximilian P. E. Lock,
- Abstract summary: This paper builds on the Quantum Darwinism framework derived to explain the emergence of the classical world.
We establish a measurement error bound to quantify the probability an observer will obtain an incorrect measurement outcome.
Using this error bound, we show that the objectifying observables readily equilibrate on average under the set of Hamiltonians.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The challenge of understanding quantum measurement persists as a fundamental issue in modern physics. Particularly, the abrupt and energy-non-conserving collapse of the wave function appears to contradict classical thermodynamic laws. The contradiction can be resolved by considering measurement itself to be an entropy-increasing process, driven by the second law of thermodynamics. This proposal, dubbed the Measurement-Equilibration Hypothesis, builds on the Quantum Darwinism framework derived to explain the emergence of the classical world. Measurement outcomes thus emerge objectively from unitary dynamics via closed-system equilibration. Working within this framework, we construct the set of \textit{`objectifying observables'} that best encode the measurement statistics of a system in an objective manner, and establish a measurement error bound to quantify the probability an observer will obtain an incorrect measurement outcome. Using this error bound, we show that the objectifying observables readily equilibrate on average under the set of Hamiltonians which preserve the outcome statistics on the measured system. Using a random matrix model for this set, we numerically determine the measurement error bound, finding that the error only approaches zero with increasing environment size when the environment is coarse-grained into so-called observer systems. This indicates the necessity of coarse-graining an environment for the emergence of objective measurement outcomes.
Related papers
- Imperfect Measurements and Conjugate Observables [0.0]
We relax the standard von Neumann interaction used in Quantum measurements by allowing for imperfect measurements.
It is possible to attain approximate decoherence of conjugate quantities that resembles classical physics.
arXiv Detail & Related papers (2024-01-10T09:02:24Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Quantum measurements and equilibration: the emergence of objective
reality via entropy maximisation [0.0]
We formalise the hypothesis that quantum measurements are driven by the natural tendency of closed systems to maximize entropy.
We lay the groundwork for self-contained models of quantum measurement, proposing improvements to our simple scheme.
arXiv Detail & Related papers (2023-02-22T10:06:17Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Uncertainty relation for indirect measurement [4.111899441919164]
Indirect measurement can be used to read out the outcome of a quantum system without resorting to a straightforward approach.
We derive a new measurement uncertainty with respect to indirect measurement in the light of quantum thermodynamics.
arXiv Detail & Related papers (2022-08-05T18:11:24Z) - Effects of the free evolution in the Arthurs-Kelly model of simultaneous
measurement and in the retrodictive predictions of the Heisenberg uncertainty
relations [0.0]
We study the effect of the full dynamics on the optimal limits of retrodictive and predictive accuracy of the simultaneous measurement process.
We show that the inclusion of the free Hamiltonian induces a spreading on the probability density of the measurement setting.
arXiv Detail & Related papers (2021-09-01T19:17:39Z) - Quantifying Information Extraction using Generalized Quantum
Measurements [0.0]
We show that the same properties hold even when considering generalized measurements.
Observational entropy is a well-defined quantifier determining how influential a given series of measurements is in information extraction.
We discuss observational entropy as a tool for quantum state inference.
arXiv Detail & Related papers (2020-07-11T07:31:25Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.