論文の概要: Deep Learning modeling of Limit Order Book: a comparative perspective
- arxiv url: http://arxiv.org/abs/2007.07319v3
- Date: Sun, 18 Oct 2020 15:44:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-11 05:49:33.421214
- Title: Deep Learning modeling of Limit Order Book: a comparative perspective
- Title(参考訳): 極限順序ブックの深層学習モデル : 比較
- Authors: Antonio Briola, Jeremy Turiel, Tomaso Aste
- Abstract要約: 本研究は、高周波取引のためのディープラーニング分野における理論的および実践的な問題に対処する。
ランダムモデル、ロジスティック回帰、LSTM、アテンションマスクを備えたLSTM、CNN-LSTM、アテンションなどの最先端モデルについてレビューし、同じタスクで比較する。
モデリング手法の根底にある次元は、リミット・オーダー・ブックの力学に固有のものかどうかを理解するために研究される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The present work addresses theoretical and practical questions in the domain
of Deep Learning for High Frequency Trading. State-of-the-art models such as
Random models, Logistic Regressions, LSTMs, LSTMs equipped with an Attention
mask, CNN-LSTMs and MLPs are reviewed and compared on the same tasks, feature
space and dataset, and then clustered according to pairwise similarity and
performance metrics. The underlying dimensions of the modeling techniques are
hence investigated to understand whether these are intrinsic to the Limit Order
Book's dynamics. We observe that the Multilayer Perceptron performs comparably
to or better than state-of-the-art CNN-LSTM architectures indicating that
dynamic spatial and temporal dimensions are a good approximation of the LOB's
dynamics, but not necessarily the true underlying dimensions.
- Abstract(参考訳): 本研究は,高頻度取引のための深層学習の分野における理論的,実践的な問題を扱う。
ランダムモデル、ロジスティック回帰、LSTM、LSTM、アテンションマスクを備えたLSTM、CNN-LSTM、MLPといった最先端モデルをレビューし、同じタスク、特徴空間、データセットで比較し、ペアの類似性とパフォーマンスメトリクスに従ってクラスタ化する。
したがって、モデリング手法の基本次元は、これらがリミット・オーダー・ブックのダイナミクスに固有のものであるかどうかを理解するために研究されている。
我々は、動的空間次元と時間次元がLOBのダイナミクスのよい近似であることを示すCNN-LSTMアーキテクチャに比較して、多層パーセプトロンが同等かそれ以上の性能を発揮することを観察する。
関連論文リスト
- Longhorn: State Space Models are Amortized Online Learners [51.10124201221601]
本稿では,オンライン回帰目標を最適化するための暗黙の更新に基づく新しい深層SSMアーキテクチャを提案する。
実験の結果,我々のモデルは,標準シーケンスモデリングベンチマークや言語モデリングタスクにおいて,最先端のSSMよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-07-19T11:12:08Z) - Towards a theory of learning dynamics in deep state space models [12.262490032020832]
状態空間モデル(SSM)は多くの長いシーケンスモデリングタスクにおいて顕著な経験的性能を示した。
この研究は、ディープステート空間モデルにおける動的学習の理論への一歩である。
論文 参考訳(メタデータ) (2024-07-10T00:01:56Z) - Understanding the differences in Foundation Models: Attention, State Space Models, and Recurrent Neural Networks [50.29356570858905]
本稿では,これらすべてのアーキテクチャの共通表現に関する原則的な調査を可能にする動的システムフレームワーク(DSF)について紹介する。
ソフトマックスアテンションと他のモデルクラスとの原理的比較を行い、ソフトマックスアテンションを近似できる理論条件について議論する。
このことは、DSFが将来のより効率的でスケーラブルな基盤モデルの体系的な開発を導く可能性を示している。
論文 参考訳(メタデータ) (2024-05-24T17:19:57Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Theoretical Foundations of Deep Selective State-Space Models [14.989266348816749]
ディープSSMは、さまざまなドメインセットで優れたパフォーマンスを示す。
最近の研究で、線形リカレンス電力が入力と隠れ状態の間の乗法的相互作用を可能にすることが示されている。
ランダム線形再帰が単純な入力制御遷移を備える場合、隠れ状態は強力な数学的対象の低次元射影であることを示す。
論文 参考訳(メタデータ) (2024-02-29T11:20:16Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - Disentangling Structured Components: Towards Adaptive, Interpretable and
Scalable Time Series Forecasting [52.47493322446537]
本研究では,時空間パターンの各コンポーネントを個別にモデル化する適応的,解釈可能,スケーラブルな予測フレームワークを開発する。
SCNNは、空間時間パターンの潜在構造を算術的に特徴づける、MSSの事前定義された生成プロセスで動作する。
SCNNが3つの実世界のデータセットの最先端モデルよりも優れた性能を達成できることを示すため、大規模な実験が行われた。
論文 参考訳(メタデータ) (2023-05-22T13:39:44Z) - A Comparative Study of Detecting Anomalies in Time Series Data Using
LSTM and TCN Models [2.007262412327553]
本稿では,2つの著名なディープラーニングモデリング手法を比較した。
Recurrent Neural Network (RNN)-based Long Short-Term Memory (LSTM) と Convolutional Neural Network (CNN)-based Temporal Convolutional Networks (TCN) を比較した。
論文 参考訳(メタデータ) (2021-12-17T02:46:55Z) - Compressing LSTM Networks by Matrix Product Operators [7.395226141345625]
Long Short Term Memory(LSTM)モデルは、多くの最先端自然言語処理(NLP)と音声強調(SE)アルゴリズムの構築ブロックである。
ここでは、量子多体物理学における量子状態の局所的相関を記述するMPO分解を紹介する。
LSTMモデルを置き換えるために,行列積演算子(MPO)に基づくニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-12-22T11:50:06Z) - A journey in ESN and LSTM visualisations on a language task [77.34726150561087]
我々は,CSL(Cross-Situationnal Learning)タスクでESNとLSTMを訓練した。
その結果, 性能比較, 内部力学解析, 潜伏空間の可視化の3種類が得られた。
論文 参考訳(メタデータ) (2020-12-03T08:32:01Z) - Sentiment Analysis Using Simplified Long Short-term Memory Recurrent
Neural Networks [1.5146765382501612]
GOPディベートTwitterデータセット上で感情分析を行う。
学習を高速化し、計算コストと時間を短縮するために、LSTMモデルのスリムバージョンを6つの異なるパラメータで削減する手法を提案する。
論文 参考訳(メタデータ) (2020-05-08T12:50:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。