論文の概要: timeXplain -- A Framework for Explaining the Predictions of Time Series
Classifiers
- arxiv url: http://arxiv.org/abs/2007.07606v1
- Date: Wed, 15 Jul 2020 10:32:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 04:51:23.746672
- Title: timeXplain -- A Framework for Explaining the Predictions of Time Series
Classifiers
- Title(参考訳): timeXplain -- 時系列分類器の予測を説明するフレームワーク
- Authors: Felix Mujkanovic, Vanja Dosko\v{c}, Martin Schirneck, Patrick
Sch\"afer, Tobias Friedrich
- Abstract要約: 我々は、説明可能な人工知能の範囲を時系列分類とTimeXplainフレームワークによる価値予測にまで広げる。
本稿では,時間領域と周波数領域の新たな領域マッピングと時系列統計について述べるとともに,その説明力と限界を解析する。
- 参考スコア(独自算出の注目度): 7.190483723329193
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern time series classifiers display impressive predictive capabilities,
yet their decision-making processes mostly remain black boxes to the user. At
the same time, model-agnostic explainers, such as the recently proposed SHAP,
promise to make the predictions of machine learning models interpretable,
provided there are well-designed domain mappings. We bring both worlds together
in our timeXplain framework, extending the reach of explainable artificial
intelligence to time series classification and value prediction. We present
novel domain mappings for the time and the frequency domain as well as series
statistics and analyze their explicative power as well as their limits. We
employ timeXplain in a large-scale experimental comparison of several
state-of-the-art time series classifiers and discover similarities between
seemingly distinct classification concepts such as residual neural networks and
elastic ensembles.
- Abstract(参考訳): 現代の時系列分類器は印象的な予測能力を示すが、その決定過程はユーザにとってブラックボックスのままである。
同時に、最近提案されたSHAPのようなモデルに依存しない説明者は、十分に設計されたドメインマッピングがあれば、機械学習モデルの予測を解釈できるようにする。
両世界をタイムXplainフレームワークにまとめて、説明可能な人工知能の範囲を時系列の分類と価値予測にまで広げる。
時系列統計だけでなく,時間領域と周波数領域の新たな領域マッピングを提案し,その拡張力とその限界を解析した。
我々はtimexplainを用いて,最先端の時系列分類器の大規模比較を行い,残留ニューラルネットワークや弾性アンサンブルなど,一見異なる分類概念の類似性を見出した。
関連論文リスト
- XForecast: Evaluating Natural Language Explanations for Time Series Forecasting [72.57427992446698]
時系列予測は、特に正確な予測に依存するステークホルダーにとって、意思決定を支援する。
伝統的に説明可能なAI(XAI)メソッドは、機能や時間的重要性を基盤とするものであり、専門家の知識を必要とすることが多い。
時系列データにおける複雑な因果関係のため,予測NLEの評価は困難である。
論文 参考訳(メタデータ) (2024-10-18T05:16:39Z) - Time is Not Enough: Time-Frequency based Explanation for Time-Series Black-Box Models [12.575427166236844]
時系列ブラックボックス分類器の時間周波数説明を提供するXAIフレームワークであるSpectral eXplanation(SpectralX)を提案する。
また,新しい摂動型XAI法であるFeature Importance Approximations (FIA)を導入する。
論文 参考訳(メタデータ) (2024-08-07T08:51:10Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
提案するOpenSTLは,一般的なアプローチを再帰的モデルと再帰的モデルに分類する。
我々は, 合成移動物体軌道, 人間の動き, 運転シーン, 交通流, 天気予報など, さまざまな領域にわたるデータセットの標準評価を行う。
リカレントフリーモデルは、リカレントモデルよりも効率と性能のバランスが良いことがわかった。
論文 参考訳(メタデータ) (2023-06-20T03:02:14Z) - Self-Interpretable Time Series Prediction with Counterfactual
Explanations [4.658166900129066]
解釈可能な時系列予測は、医療や自動運転といった安全上重要な分野において重要である。
既存の手法の多くは、重要なスコアを時系列のセグメントに割り当てることで予測を解釈することに集中している。
我々は,時系列予測のための非現実的かつ実用的な説明を生成する,CounTS(Counfactual Time Series)と呼ばれる自己解釈可能なモデルを開発した。
論文 参考訳(メタデータ) (2023-06-09T16:42:52Z) - Encoding Time-Series Explanations through Self-Supervised Model Behavior
Consistency [26.99599329431296]
トレーニング説明書の時系列一貫性モデルであるTimeXを提案する。
TimeXは、事前訓練された時系列モデルの振る舞いを模倣するために解釈可能なサロゲートを訓練する。
我々は8つの合成および実世界のデータセット上でTimeXを評価し、その性能を最先端の解釈可能性手法と比較した。
論文 参考訳(メタデータ) (2023-06-03T13:25:26Z) - TempSAL -- Uncovering Temporal Information for Deep Saliency Prediction [64.63645677568384]
本稿では,逐次時間間隔でサリエンシマップを出力する新たなサリエンシ予測モデルを提案する。
提案手法は,学習した時間マップを組み合わせることで,サリエンシ予測を局所的に調整する。
私たちのコードはGitHubで公開されます。
論文 参考訳(メタデータ) (2023-01-05T22:10:16Z) - VQ-AR: Vector Quantized Autoregressive Probabilistic Time Series
Forecasting [10.605719154114354]
時系列モデルは過去の予測を正確に予測することを目的としており、そこではビジネス上の意思決定のような重要な下流のタスクに予測が使用される。
本稿では,新しい自己回帰型アーキテクチャであるVQ-ARを提案する。
論文 参考訳(メタデータ) (2022-05-31T15:43:46Z) - Instance-based Counterfactual Explanations for Time Series
Classification [11.215352918313577]
我々は,時系列分類器の対実的説明を生成する新しいモデルに依存しないケースベース手法を推し進める。
我々は、Native Guideが、主要なベンチマークカウンターファクト法により生成されたものよりも優れた、可塑性、近さ、スパース、多彩な説明を生成することを示す。
論文 参考訳(メタデータ) (2020-09-28T10:52:48Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
本稿では,新しいタイプの解釈可能な機械学習手法を提案する。
量子シフトを用いた分類モデルでは、特徴空間の予測クラスへの分割を理解するのに役立ちます。
基本的に、実際のデータポイント(または特定の関心点)を使用し、特定の特徴をわずかに引き上げたり減少させたりした後の予測の変化を観察する。
論文 参考訳(メタデータ) (2020-09-11T16:35:53Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
本稿では,時間集合予測のためのディープニューラルネットワークに基づく統合解を提案する。
ユニークな視点は、セットレベルの共起グラフを構築することで要素関係を学ぶことである。
我々は,要素や集合の時間依存性を適応的に学習するアテンションベースのモジュールを設計する。
論文 参考訳(メタデータ) (2020-06-20T03:29:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。