論文の概要: Self-Interpretable Time Series Prediction with Counterfactual
Explanations
- arxiv url: http://arxiv.org/abs/2306.06024v3
- Date: Thu, 22 Jun 2023 05:15:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-23 17:03:30.925348
- Title: Self-Interpretable Time Series Prediction with Counterfactual
Explanations
- Title(参考訳): 実測による自己解釈可能な時系列予測
- Authors: Jingquan Yan, Hao Wang
- Abstract要約: 解釈可能な時系列予測は、医療や自動運転といった安全上重要な分野において重要である。
既存の手法の多くは、重要なスコアを時系列のセグメントに割り当てることで予測を解釈することに集中している。
我々は,時系列予測のための非現実的かつ実用的な説明を生成する,CounTS(Counfactual Time Series)と呼ばれる自己解釈可能なモデルを開発した。
- 参考スコア(独自算出の注目度): 4.658166900129066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpretable time series prediction is crucial for safety-critical areas
such as healthcare and autonomous driving. Most existing methods focus on
interpreting predictions by assigning important scores to segments of time
series. In this paper, we take a different and more challenging route and aim
at developing a self-interpretable model, dubbed Counterfactual Time Series
(CounTS), which generates counterfactual and actionable explanations for time
series predictions. Specifically, we formalize the problem of time series
counterfactual explanations, establish associated evaluation protocols, and
propose a variational Bayesian deep learning model equipped with counterfactual
inference capability of time series abduction, action, and prediction. Compared
with state-of-the-art baselines, our self-interpretable model can generate
better counterfactual explanations while maintaining comparable prediction
accuracy.
- Abstract(参考訳): 解釈可能な時系列予測は、医療や自動運転のような安全クリティカルな分野に不可欠である。
既存の手法の多くは、重要なスコアを時系列のセグメントに割り当てることで予測を解釈することに集中している。
本稿では,時間列予測のための非現実的かつ実用的な説明を生成する,CounTS(Counfactual Time Series)と呼ばれる自己解釈可能なモデルの開発を目指す。
具体的には,時系列の反事実的説明の問題を定式化し,関連する評価プロトコルを定式化し,時系列推論,行動,予測の反事実的推論能力を備えた変分ベイズ深層学習モデルを提案する。
最先端のベースラインと比較して、我々の自己解釈可能なモデルは、同等の予測精度を維持しながら、より優れた対実的説明を生成することができる。
関連論文リスト
- Implicit Reasoning in Deep Time Series Forecasting [16.750280337155647]
この研究は、ディープ時系列予測モデルの推論能力を評価するための最初の一歩を踏み出した。
系統的に編成されたアウト・オブ・ディストリビューションシナリオにおいて,ある線形なパッチベーストランスフォーマーモデルが効果的に一般化できることが判明した。
論文 参考訳(メタデータ) (2024-09-17T02:11:19Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - Performative Time-Series Forecasting [71.18553214204978]
我々は,機械学習の観点から,パフォーマンス時系列予測(PeTS)を定式化する。
本稿では,予測分布シフトに対する遅延応答の概念を活用する新しい手法であるFeature Performative-Shifting(FPS)を提案する。
新型コロナウイルスの複数の時系列モデルと交通予報タスクを用いた総合的な実験を行った。
論文 参考訳(メタデータ) (2023-10-09T18:34:29Z) - Encoding Time-Series Explanations through Self-Supervised Model Behavior
Consistency [26.99599329431296]
トレーニング説明書の時系列一貫性モデルであるTimeXを提案する。
TimeXは、事前訓練された時系列モデルの振る舞いを模倣するために解釈可能なサロゲートを訓練する。
我々は8つの合成および実世界のデータセット上でTimeXを評価し、その性能を最先端の解釈可能性手法と比較した。
論文 参考訳(メタデータ) (2023-06-03T13:25:26Z) - Generic Temporal Reasoning with Differential Analysis and Explanation [61.96034987217583]
時間差分解析でギャップを埋めるTODAYという新しいタスクを導入する。
TODAYは、システムがインクリメンタルな変化の効果を正しく理解できるかどうかを評価する。
共同学習においてTODAYの指導スタイルと説明アノテーションが有効であることを示す。
論文 参考訳(メタデータ) (2022-12-20T17:40:03Z) - VQ-AR: Vector Quantized Autoregressive Probabilistic Time Series
Forecasting [10.605719154114354]
時系列モデルは過去の予測を正確に予測することを目的としており、そこではビジネス上の意思決定のような重要な下流のタスクに予測が使用される。
本稿では,新しい自己回帰型アーキテクチャであるVQ-ARを提案する。
論文 参考訳(メタデータ) (2022-05-31T15:43:46Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Series Saliency: Temporal Interpretation for Multivariate Time Series
Forecasting [30.054015098590874]
時系列予測のための時系列解釈のためのシリーズサリエンシーフレームワークを提示する。
時系列のスライディングウィンドウから「時系列画像」を抽出することにより、サリエンシーマップのセグメンテーションを適用する。
本フレームワークは,時系列予測タスクの時間的解釈を生成し,正確な時系列予測を生成する。
論文 参考訳(メタデータ) (2020-12-16T23:48:00Z) - timeXplain -- A Framework for Explaining the Predictions of Time Series
Classifiers [3.6433472230928428]
本稿では,時間領域,周波数領域,時系列統計に関する新しいドメインマッピングを提案する。
我々は彼らの説明力と限界を分析する。
我々は、TimeXplainといくつかのモデル固有の説明手法を実験的に比較するために、新しい評価基準を用いる。
論文 参考訳(メタデータ) (2020-07-15T10:32:43Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
本稿では,時間集合予測のためのディープニューラルネットワークに基づく統合解を提案する。
ユニークな視点は、セットレベルの共起グラフを構築することで要素関係を学ぶことである。
我々は,要素や集合の時間依存性を適応的に学習するアテンションベースのモジュールを設計する。
論文 参考訳(メタデータ) (2020-06-20T03:29:02Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
逐次データによる曖昧な予測を扱うために,Multiple hypothesis Prediction(MHP)モデルの拡張を提案する。
また、不確実性を考慮するのに適した曖昧な問題に対する新しい尺度も導入する。
論文 参考訳(メタデータ) (2020-03-10T09:15:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。