Transformation Consistency Regularization- A Semi-Supervised Paradigm
for Image-to-Image Translation
- URL: http://arxiv.org/abs/2007.07867v1
- Date: Wed, 15 Jul 2020 17:41:35 GMT
- Title: Transformation Consistency Regularization- A Semi-Supervised Paradigm
for Image-to-Image Translation
- Authors: Aamir Mustafa and Rafal K. Mantiuk
- Abstract summary: We propose Transformation Consistency Regularization, which delves into a more challenging setting of image-to-image translation.
We evaluate the efficacy of our algorithm on three different applications: image colorization, denoising and super-resolution.
Our method is significantly data efficient, requiring only around 10 - 20% of labeled samples to achieve similar image reconstructions to its fully-supervised counterpart.
- Score: 18.870983535180457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scarcity of labeled data has motivated the development of semi-supervised
learning methods, which learn from large portions of unlabeled data alongside a
few labeled samples. Consistency Regularization between model's predictions
under different input perturbations, particularly has shown to provide
state-of-the art results in a semi-supervised framework. However, most of these
method have been limited to classification and segmentation applications. We
propose Transformation Consistency Regularization, which delves into a more
challenging setting of image-to-image translation, which remains unexplored by
semi-supervised algorithms. The method introduces a diverse set of geometric
transformations and enforces the model's predictions for unlabeled data to be
invariant to those transformations. We evaluate the efficacy of our algorithm
on three different applications: image colorization, denoising and
super-resolution. Our method is significantly data efficient, requiring only
around 10 - 20% of labeled samples to achieve similar image reconstructions to
its fully-supervised counterpart. Furthermore, we show the effectiveness of our
method in video processing applications, where knowledge from a few frames can
be leveraged to enhance the quality of the rest of the movie.
Related papers
- Layered Rendering Diffusion Model for Zero-Shot Guided Image Synthesis [60.260724486834164]
This paper introduces innovative solutions to enhance spatial controllability in diffusion models reliant on text queries.
We present two key innovations: Vision Guidance and the Layered Rendering Diffusion framework.
We apply our method to three practical applications: bounding box-to-image, semantic mask-to-image and image editing.
arXiv Detail & Related papers (2023-11-30T10:36:19Z) - Patch-Wise Self-Supervised Visual Representation Learning: A Fine-Grained Approach [4.9204263448542465]
This study introduces an innovative, fine-grained dimension by integrating patch-level discrimination into self-supervised visual representation learning.
We employ a distinctive photometric patch-level augmentation, where each patch is individually augmented, independent from other patches within the same view.
We present a simple yet effective patch-matching algorithm to find the corresponding patches across the augmented views.
arXiv Detail & Related papers (2023-10-28T09:35:30Z) - Consistency Regularisation in Varying Contexts and Feature Perturbations
for Semi-Supervised Semantic Segmentation of Histology Images [14.005379068469361]
We present a consistency based semi-supervised learning (SSL) approach that can help mitigate this challenge.
SSL models might also be susceptible to changing context and features perturbations exhibiting poor generalisation due to the limited training data.
We show that cross-consistency training makes the encoder features invariant to different perturbations and improves the prediction confidence.
arXiv Detail & Related papers (2023-01-30T18:21:57Z) - A training-free recursive multiresolution framework for diffeomorphic
deformable image registration [6.929709872589039]
We propose a novel diffeomorphic training-free approach for deformable image registration.
The proposed architecture is simple in design. The moving image is warped successively at each resolution and finally aligned to the fixed image.
The entire system is end-to-end and optimized for each pair of images from scratch.
arXiv Detail & Related papers (2022-02-01T15:17:17Z) - Smoothing the Disentangled Latent Style Space for Unsupervised
Image-to-Image Translation [56.55178339375146]
Image-to-Image (I2I) multi-domain translation models are usually evaluated also using the quality of their semantic results.
We propose a new training protocol based on three specific losses which help a translation network to learn a smooth and disentangled latent style space.
arXiv Detail & Related papers (2021-06-16T17:58:21Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
We devise a hierarchical generative model that captures the multi-scale patch distribution of each training image.
The anomaly score is obtained by aggregating the patch-based votes of the correct transformation across scales and image regions.
arXiv Detail & Related papers (2021-04-29T17:49:48Z) - TSIT: A Simple and Versatile Framework for Image-to-Image Translation [103.92203013154403]
We introduce a simple and versatile framework for image-to-image translation.
We provide a carefully designed two-stream generative model with newly proposed feature transformations.
This allows multi-scale semantic structure information and style representation to be effectively captured and fused by the network.
A systematic study compares the proposed method with several state-of-the-art task-specific baselines, verifying its effectiveness in both perceptual quality and quantitative evaluations.
arXiv Detail & Related papers (2020-07-23T15:34:06Z) - FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning [64.32306537419498]
We propose a novel learned feature-based refinement and augmentation method that produces a varied set of complex transformations.
These transformations also use information from both within-class and across-class representations that we extract through clustering.
We demonstrate that our method is comparable to current state of art for smaller datasets while being able to scale up to larger datasets.
arXiv Detail & Related papers (2020-07-16T17:55:31Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.