論文の概要: Comprehensive Facial Expression Synthesis using Human-Interpretable
Language
- arxiv url: http://arxiv.org/abs/2007.08154v1
- Date: Thu, 16 Jul 2020 07:28:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 23:14:52.643001
- Title: Comprehensive Facial Expression Synthesis using Human-Interpretable
Language
- Title(参考訳): 人間解釈言語を用いた包括的顔表情合成
- Authors: Joanna Hong, Jung Uk Kim, Sangmin Lee, and Yong Man Ro
- Abstract要約: 言語に基づく表情記述から新しい表情合成モデルを提案する。
本手法は,詳細な表情で顔画像の合成を行う。
さらに, 顔の特徴に言語特徴を効果的に埋め込むことで, 個々の単語を制御し, 顔の動きを処理できる。
- 参考スコア(独自算出の注目度): 33.11402372756348
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in facial expression synthesis have shown promising results
using diverse expression representations including facial action units. Facial
action units for an elaborate facial expression synthesis need to be
intuitively represented for human comprehension, not a numeric categorization
of facial action units. To address this issue, we utilize human-friendly
approach: use of natural language where language helps human grasp conceptual
contexts. In this paper, therefore, we propose a new facial expression
synthesis model from language-based facial expression description. Our method
can synthesize the facial image with detailed expressions. In addition,
effectively embedding language features on facial features, our method can
control individual word to handle each part of facial movement. Extensive
qualitative and quantitative evaluations were conducted to verify the
effectiveness of the natural language.
- Abstract(参考訳): 表情合成の最近の進歩は、顔の動作単位を含む多様な表現表現を用いた有望な結果を示している。
精巧な表情合成のための顔動作単位は、人間の理解のために直感的に表現される必要があり、顔動作単位の数値的分類ではない。
この問題に対処するために,我々は自然言語の利用という人間にやさしいアプローチを用いている。
そこで本稿では,言語に基づく表情記述に基づく新しい表情合成モデルを提案する。
本手法は,詳細な表情で顔画像の合成を行う。
さらに, 顔の特徴に言語特徴を効果的に埋め込むことで, 個々の単語を制御し, 顔の動きを処理できる。
自然言語の有効性を検証するために,広範囲な質的,定量的な評価を行った。
関連論文リスト
- Knowledge-Enhanced Facial Expression Recognition with Emotional-to-Neutral Transformation [66.53435569574135]
既存の表情認識法は、通常、個別のラベルを使って訓練済みのビジュアルエンコーダを微調整する。
視覚言語モデルによって生成されるテキスト埋め込みの豊富な知識は、識別的表情表現を学ぶための有望な代替手段である。
感情-中性変換を用いた知識強化FER法を提案する。
論文 参考訳(メタデータ) (2024-09-13T07:28:57Z) - How Do You Perceive My Face? Recognizing Facial Expressions in Multi-Modal Context by Modeling Mental Representations [5.895694050664867]
本稿では,単純な分類タスクを超越した新しい表情分類手法を提案する。
本モデルでは,認識された顔を正確に分類し,文脈で顔を観察する際,人間によって知覚される対応する心的表現を合成する。
本研究では,人間の心的表現の近似を効果的に生成することを示す。
論文 参考訳(メタデータ) (2024-09-04T09:32:40Z) - Towards Localized Fine-Grained Control for Facial Expression Generation [54.82883891478555]
人間、特にその顔は、豊かな表現と意図を伝える能力のために、コンテンツ生成の中心である。
現在の生成モデルは、主に平らな中立表現と文字なしの笑顔を認証なしで生成する。
顔生成における表情制御におけるAU(アクションユニット)の利用を提案する。
論文 参考訳(メタデータ) (2024-07-25T18:29:48Z) - Speech2UnifiedExpressions: Synchronous Synthesis of Co-Speech Affective Face and Body Expressions from Affordable Inputs [67.27840327499625]
本稿では,デジタル文字の表情と上半身ジェスチャーを同時に合成するマルチモーダル学習手法を提案する。
提案手法は, 映像データから直接推定される, まばらな顔のランドマークと上体関節から学習し, もっともらしい感情的性格運動を生成する。
論文 参考訳(メタデータ) (2024-06-26T04:53:11Z) - GaFET: Learning Geometry-aware Facial Expression Translation from
In-The-Wild Images [55.431697263581626]
本稿では,パラメトリックな3次元顔表現をベースとした新しい顔表情翻訳フレームワークを提案する。
我々は、最先端の手法と比較して、高品質で正確な表情伝達結果を実現し、様々なポーズや複雑なテクスチャの適用性を実証する。
論文 参考訳(メタデータ) (2023-08-07T09:03:35Z) - Emotion Recognition for Challenged People Facial Appearance in Social
using Neural Network [0.0]
CNNでは、取得した画像を異なる感情カテゴリに分類するために顔表現が使用される。
本稿では,画像による表情の認識と啓蒙の不変性について提案する。
論文 参考訳(メタデータ) (2023-05-11T14:38:27Z) - Interpretable Explainability in Facial Emotion Recognition and
Gamification for Data Collection [0.0]
顔の感情認識モデルを訓練するには、大量のデータと高価なアノテーションプロセスが必要である。
我々は,人間の明示的なラベル付けを行なわずに,注釈付き顔感情データを取得するゲーミフィケーション手法を開発した。
プレイヤーの表情認知能力と表情能力は,繰り返しゲームプレイによって著しく向上した。
論文 参考訳(メタデータ) (2022-11-09T09:53:48Z) - Explore the Expression: Facial Expression Generation using Auxiliary
Classifier Generative Adversarial Network [0.0]
本稿では,複数の文字識別のための表情の集合を頑健に生成する生成モデルアーキテクチャを提案する。
簡単な表現を組み合わせることで複雑な表現を生成する可能性について検討する。
論文 参考訳(メタデータ) (2022-01-22T14:37:13Z) - LandmarkGAN: Synthesizing Faces from Landmarks [43.53204737135101]
顔のランドマークに基づいた顔合成を入力として行う新しい手法であるLandmarkGANについて述べる。
提案手法では,顔のランドマークの集合を異なる対象の新たな顔に変換することができるが,顔の表情や向きは同一である。
論文 参考訳(メタデータ) (2020-10-31T13:27:21Z) - LEED: Label-Free Expression Editing via Disentanglement [57.09545215087179]
LEEDフレームワークは、表現ラベルを必要とせずに、前頭顔画像とプロファイル顔画像の両方の表現を編集することができる。
2つの新たな損失は、最適な表現の切り離しと一貫した合成のために設計されている。
論文 参考訳(メタデータ) (2020-07-17T13:36:15Z) - Learning to Augment Expressions for Few-shot Fine-grained Facial
Expression Recognition [98.83578105374535]
顔表情データベースF2EDについて述べる。
顔の表情は119人から54人まで、200万枚以上の画像が含まれている。
実世界のシナリオでは,不均一なデータ分布やサンプルの欠如が一般的であるので,数発の表情学習の課題を評価する。
顔画像合成のための統合されたタスク駆動型フレームワークであるComposeal Generative Adversarial Network (Comp-GAN) 学習を提案する。
論文 参考訳(メタデータ) (2020-01-17T03:26:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。