論文の概要: LandmarkGAN: Synthesizing Faces from Landmarks
- arxiv url: http://arxiv.org/abs/2011.00269v2
- Date: Sat, 6 Feb 2021 04:19:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-01 05:05:14.651919
- Title: LandmarkGAN: Synthesizing Faces from Landmarks
- Title(参考訳): LandmarkGAN: ランドマークから顔を合成する
- Authors: Pu Sun, Yuezun Li, Honggang Qi and Siwei Lyu
- Abstract要約: 顔のランドマークに基づいた顔合成を入力として行う新しい手法であるLandmarkGANについて述べる。
提案手法では,顔のランドマークの集合を異なる対象の新たな顔に変換することができるが,顔の表情や向きは同一である。
- 参考スコア(独自算出の注目度): 43.53204737135101
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face synthesis is an important problem in computer vision with many
applications. In this work, we describe a new method, namely LandmarkGAN, to
synthesize faces based on facial landmarks as input. Facial landmarks are a
natural, intuitive, and effective representation for facial expressions and
orientations, which are independent from the target's texture or color and
background scene. Our method is able to transform a set of facial landmarks
into new faces of different subjects, while retains the same facial expression
and orientation. Experimental results on face synthesis and reenactments
demonstrate the effectiveness of our method.
- Abstract(参考訳): 顔合成は多くのアプリケーションでコンピュータビジョンにおいて重要な問題である。
本稿では,顔のランドマークを入力として顔合成を行う新しい手法であるランドマークガンについて述べる。
顔のランドマークは自然で直感的で効果的な表情と向きの表現であり、ターゲットのテクスチャや色、背景シーンとは独立している。
提案手法では,顔のランドマークの集合を異なる対象の新たな顔に変換することができるが,顔の表情や向きは同一である。
顔合成および再現実験の結果,本手法の有効性が示された。
関連論文リスト
- Knowledge-Enhanced Facial Expression Recognition with Emotional-to-Neutral Transformation [66.53435569574135]
既存の表情認識法は、通常、個別のラベルを使って訓練済みのビジュアルエンコーダを微調整する。
視覚言語モデルによって生成されるテキスト埋め込みの豊富な知識は、識別的表情表現を学ぶための有望な代替手段である。
感情-中性変換を用いた知識強化FER法を提案する。
論文 参考訳(メタデータ) (2024-09-13T07:28:57Z) - ComFace: Facial Representation Learning with Synthetic Data for Comparing Faces [5.07975834105566]
合成画像を用いた顔表現学習手法ComFaceを提案する。
効果的な表現学習のために、ComFaceは2つの特徴表現、すなわち、対人的な顔の違いと対人的な顔の変化を取得することを目指している。
我々のComFaceは、合成データのみを用いて訓練され、実画像を用いて訓練された一般的な事前学習や最先端表現学習方法と同等以上の転送性能を達成する。
論文 参考訳(メタデータ) (2024-05-25T02:44:07Z) - Emotion Separation and Recognition from a Facial Expression by Generating the Poker Face with Vision Transformers [57.1091606948826]
我々はこれらの課題に対処するため,ポーカー・フェイス・ビジョン・トランスフォーマー (PF-ViT) と呼ばれる新しいFERモデルを提案する。
PF-ViTは、対応するポーカーフェースを生成して、乱れを認識できない感情を静的な顔画像から分離し、認識することを目的としている。
PF-ViTはバニラビジョントランスフォーマーを使用し、そのコンポーネントは大規模な表情データセット上でMasked Autoencodeerとして事前トレーニングされている。
論文 参考訳(メタデータ) (2022-07-22T13:39:06Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
我々は、ID混在(IM)とドメイン混在(DM)を併用したSynFaceを考案し、パフォーマンスギャップを緩和する。
また、合成顔画像の系統的実験分析を行い、合成データを顔認識に効果的に活用する方法についての知見を提供する。
論文 参考訳(メタデータ) (2021-08-18T03:41:54Z) - Learning Facial Representations from the Cycle-consistency of Face [23.23272327438177]
顔特徴の周期一貫性を自由監督信号として導入し、ラベルのない顔画像から顔の表情を学習する。
この学習は、顔の動きサイクルの制約とアイデンティティのサイクルの制約を重畳することによって実現される。
我々のアプローチは既存の手法と競合し、アンタングル表現に埋め込まれたリッチでユニークな情報を実証する。
論文 参考訳(メタデータ) (2021-08-07T11:30:35Z) - Pro-UIGAN: Progressive Face Hallucination from Occluded Thumbnails [53.080403912727604]
Inpainting Generative Adversarial Network, Pro-UIGANを提案する。
顔の形状を利用して、隠された小さな顔の補充とアップサンプリング(8*)を行う。
Pro-UIGANは、HR面を視覚的に満足させ、下流タスクにおいて優れたパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-08-02T02:29:24Z) - Comprehensive Facial Expression Synthesis using Human-Interpretable
Language [33.11402372756348]
言語に基づく表情記述から新しい表情合成モデルを提案する。
本手法は,詳細な表情で顔画像の合成を行う。
さらに, 顔の特徴に言語特徴を効果的に埋め込むことで, 個々の単語を制御し, 顔の動きを処理できる。
論文 参考訳(メタデータ) (2020-07-16T07:28:25Z) - InterFaceGAN: Interpreting the Disentangled Face Representation Learned
by GANs [73.27299786083424]
我々は、最先端のGANモデルによって学習された不整合顔表現を解釈するInterFaceGANというフレームワークを提案する。
まず、GANは潜在空間の線型部分空間で様々な意味学を学ぶ。
次に、異なる意味論間の相関関係について詳細な研究を行い、部分空間射影を通してそれらをよりよく解離させる。
論文 参考訳(メタデータ) (2020-05-18T18:01:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。