論文の概要: Loss-tolerant quantum key distribution with a twist
- arxiv url: http://arxiv.org/abs/2007.08299v1
- Date: Thu, 16 Jul 2020 12:37:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-09 07:13:17.617900
- Title: Loss-tolerant quantum key distribution with a twist
- Title(参考訳): ツイストを用いた損失耐性量子鍵分布
- Authors: J. Eli Bourassa, Ignatius William Primaatmaja, Charles Ci Wen Lim, and
Hoi-Kwong Lo
- Abstract要約: 混合信号状態を利用するMDI QKDプロトコルに対して,QKDのセキュリティを解析するための主要な証明手法である損失耐性プロトコル(Phys. A 90, 052314 (2014)))の拡張を提供する。
混合状態はアリスとボブに秘密鍵に関するイヴの知識を減らすために使える仮想シールドシステムを提供するものとして解釈できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The security of measurement device-independent quantum key distribution (MDI
QKD) relies on a thorough characterization of one's optical source output,
especially any noise in the state preparation process. Here, we provide an
extension of the loss-tolerant protocol [Phys. Rev. A 90, 052314 (2014)], a
leading proof technique for analyzing the security of QKD, to MDI QKD protocols
that employ mixed signal states. We first reframe the core of the proof
technique, noting its generalization to treat $d$-dimensional signal encodings.
Concentrating on the qubit signal state case, we find that the mixed states can
be interpreted as providing Alice and Bob with a virtual shield system they can
employ to reduce Eve's knowledge of the secret key. We then introduce a simple
semidefinite programming method for optimizing the virtual operations they can
perform on the shield system to yield a higher key rate, along with an example
calculation of fundamentally achievable key rates in the case of random
polarization modulation error.
- Abstract(参考訳): 測定装置非依存量子鍵分布(mdi qkd)の安全性は、その光源出力、特に状態形成過程におけるノイズの徹底的なキャラクタリゼーションに依存する。
本稿では、QKDのセキュリティを解析する主要な証明手法である損失耐性プロトコル(Phys. A 90, 052314 (2014))を、混合信号状態を用いるMDI QKDプロトコルに拡張する。
最初に証明手法のコアを再構成し,$d$次元信号符号化の一般化について述べる。
量子ビット信号状態のケースに集中すると、混合状態はアリスとボブに秘密鍵に関するeveの知識を減らすために使用できる仮想シールドシステムを提供すると解釈できることがわかった。
次に,シールドシステム上で実行可能な仮想操作を最適化し,高い鍵レートを得るための簡単な半定値計画法と,ランダム偏波変調誤差の場合の基本的に達成可能な鍵レートの計算例を紹介する。
関連論文リスト
- Single-Round Proofs of Quantumness from Knowledge Assumptions [41.94295877935867]
量子性の証明は、効率的な量子コンピュータが通過できる、効率よく検証可能な対話型テストである。
既存のシングルラウンドプロトコルは大きな量子回路を必要とするが、マルチラウンドプロトコルはより小さな回路を使用するが、実験的な中間回路測定を必要とする。
我々は、既存の知識仮定に基づいて、量子性の効率的なシングルラウンド証明を構築した。
論文 参考訳(メタデータ) (2024-05-24T17:33:10Z) - Efficient Device-Independent Quantum Key Distribution [4.817429789586127]
デバイス独立量子鍵分布(デバイス独立量子鍵分布、DIQKD)は、量子物理学の法則に基づく鍵分布スキームである。
本稿では,ある参加者が状態を準備し,他の参加者に送信する,効率的なデバイス非依存の量子鍵分配プロトコルを提案する。
論文 参考訳(メタデータ) (2023-11-16T13:01:34Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
CV-QSDCシステムの最初の実験実験を行い,その安全性について報告する。
この実現は、将来的な脅威のない量子大都市圏ネットワークへの道を歩み、既存の高度な波長分割多重化(WDM)システムと互換性がある。
論文 参考訳(メタデータ) (2023-06-25T19:23:42Z) - Quantum key distribution rates from semidefinite programming [0.0]
本稿では,量子鍵分布プロトコルにおける鍵レートの効率的な計算アルゴリズムを提案する。
結果として得られるアルゴリズムは実装が簡単で、使いやすくなります。
実験データを再分析して、キーレートがどれだけ高いかを実証しています。
論文 参考訳(メタデータ) (2022-11-10T17:47:37Z) - Improved coherent one-way quantum key distribution for high-loss
channels [0.0]
我々はCOW-QKDの単純な変種を示し、そのセキュリティを無限鍵極限で証明する。
注目すべきことに、このプロトコルの鍵レートは、既存のCOW-QKD鍵レートとコヒーレントステートBB84プロトコルの鍵レートに匹敵する。
論文 参考訳(メタデータ) (2022-06-17T00:07:03Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
本研究では,実用的連続可変(CV)量子鍵分布プロトコルの性能について検討する。
ヘテロダイン検出を用いたガウス変調コヒーレント状態プロトコルを高信号対雑音比で検討する。
これにより、プロトコルの実践的な実装の性能を調べ、上記のステップに関連付けられたパラメータを最適化することができる。
論文 参考訳(メタデータ) (2022-05-20T12:37:09Z) - Measurement device-independent quantum key distribution with passive,
time-dependent source side-channels [0.39373541926236766]
位相安定化にミラーを用いる共通偏光を用いたQKD源において、時間依存性の側チャネルを同定する。
我々は、サイドチャネルの量子光学モデルに対する秘密鍵レートの感度を定量化し、情報漏洩を軽減する戦略を開発する。
論文 参考訳(メタデータ) (2021-08-19T14:08:22Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
連続可変量子鍵分布(QKD)は、ボソニックモードの二次構造を用いて、2つのリモートパーティ間の秘密鍵を確立する。
構成可能な有限サイズセキュリティの一般的な設定におけるホモダイン検出プロトコルについて検討する。
特に、ハイレート(非バイナリ)の低密度パリティチェックコードを使用する必要のあるハイシグネチャ・ツー・ノイズ・システマを解析する。
論文 参考訳(メタデータ) (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
量子鍵分布(QKD)は、遠隔者間で共通の暗号鍵の確立を可能にする。
近年,信号の乱れの監視を回避できるQKDプロトコルが提案され,初期の実験で実証されている。
我々は,ラウンドロビン差動位相シフトプロトコルのセキュリティ証明を,集団攻撃シナリオにおいて導出する。
その結果,RRDPTSプロトコルは高い量子ビット誤り率の条件下で,RDPSと比較して高い秘密鍵レートが得られることがわかった。
論文 参考訳(メタデータ) (2021-03-15T15:20:09Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
量子鍵分布(QKD)システムのセキュリティ脆弱性について概説する。
我々は主に、盗聴攻撃の源となるバックフラッシュ光(backflash light)と呼ばれる特定の効果に焦点を当てる。
論文 参考訳(メタデータ) (2020-03-23T18:23:12Z) - A polarization quantum key distribution scheme based on phase matching [0.0]
量子鍵分配プロトコルは、単一の量子状態を符号化し、情報理論的に安全な鍵分配プロトコルを通信に実装することができる。
本稿では、このPM-QKDプロトコルの偏極スキームについて、偏極スキームの基底は任意であり、検出器側チャネル攻撃を排除した。
シミュレーションの結果,固定鍵レートでの伝送距離はBB84プロトコルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-03-02T10:33:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。