Brain Tumor Classification by Cascaded Multiscale Multitask Learning
Framework Based on Feature Aggregation
- URL: http://arxiv.org/abs/2112.14320v1
- Date: Tue, 28 Dec 2021 22:49:44 GMT
- Title: Brain Tumor Classification by Cascaded Multiscale Multitask Learning
Framework Based on Feature Aggregation
- Authors: Zahra Sobhaninia, Nader Karimi, Pejman Khadivi, Shadrokh Samavi
- Abstract summary: Brain tumor analysis in MRI images is a significant and challenging issue because misdiagnosis can lead to death.
This paper presents an approach that simultaneously segments and classifies brain tumors in MRI images using a framework that contains MRI image enhancement and tumor region detection.
Subjective and objective results indicate that the segmentation and classification results based on evaluation metrics are better or comparable to the state-of-the-art.
- Score: 12.256043883052506
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Brain tumor analysis in MRI images is a significant and challenging issue
because misdiagnosis can lead to death. Diagnosis and evaluation of brain
tumors in the early stages increase the probability of successful treatment.
However, the complexity and variety of tumors, shapes, and locations make their
segmentation and classification complex. In this regard, numerous researchers
have proposed brain tumor segmentation and classification methods. This paper
presents an approach that simultaneously segments and classifies brain tumors
in MRI images using a framework that contains MRI image enhancement and tumor
region detection. Eventually, a network based on a multitask learning approach
is proposed. Subjective and objective results indicate that the segmentation
and classification results based on evaluation metrics are better or comparable
to the state-of-the-art.
Related papers
- Brain Tumor Classification From MRI Images Using Machine Learning [0.24739484546803336]
Brain tumor is a life-threatening problem and hampers the normal functioning of the human body.
The use of deep learning algorithms in medical imaging has resulted in significant improvements in the classification and diagnosis of brain tumors.
The objective of this project is to develop a predictive system for brain tumor detection using machine learning.
arXiv Detail & Related papers (2024-07-15T11:30:40Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.
We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - Brain Tumor Segmentation from MRI Images using Deep Learning Techniques [3.1498833540989413]
A public MRI dataset contains 3064 TI-weighted images from 233 patients with three variants of brain tumor, viz. meningioma, glioma, and pituitary tumor.
The dataset files were converted and preprocessed before indulging into the methodology which employs implementation and training of some well-known image segmentation deep learning models.
The experimental findings showed that among all the applied approaches, the recurrent residual U-Net which uses Adam reaches a Mean Intersection Over Union of 0.8665 and outperforms other compared state-of-the-art deep learning models.
arXiv Detail & Related papers (2023-04-29T13:33:21Z) - Brain tumor multi classification and segmentation in MRI images using
deep learning [3.1248717814228923]
The classification model is based on the EfficientNetB1 architecture and is trained to classify images into four classes: meningioma, glioma, pituitary adenoma, and no tumor.
The segmentation model is based on the U-Net architecture and is trained to accurately segment the tumor from the MRI images.
arXiv Detail & Related papers (2023-04-20T01:32:55Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
We present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification.
We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare.
arXiv Detail & Related papers (2021-08-08T11:26:34Z) - MAG-Net: Mutli-task attention guided network for brain tumor
segmentation and classification [0.9176056742068814]
This paper proposes multi-task attention guided encoder-decoder network (MAG-Net) to classify and segment the brain tumor regions using MRI images.
The model achieved promising results as compared to existing state-of-the-art models.
arXiv Detail & Related papers (2021-07-26T16:51:00Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
We show improved anomaly segmentation performance and the general capability to obtain much more crisp reconstructions of input data at native resolution.
The modeling of the laplacian pyramid further enables the delineation and aggregation of lesions at multiple scales.
arXiv Detail & Related papers (2020-06-23T09:20:42Z) - Region of Interest Identification for Brain Tumors in Magnetic Resonance
Images [8.75217589103206]
We propose a fast, automated method, with light computational complexity, to find the smallest bounding box around the tumor region.
This region-of-interest can be used as a preprocessing step in training networks for subregion tumor segmentation.
The proposed method is evaluated on the BraTS 2015 dataset, and the average gained DICE score is 0.73, which is an acceptable result for this application.
arXiv Detail & Related papers (2020-02-26T14:10:40Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.