論文の概要: Design and Analysis of a Multi-Agent E-Learning System Using Prometheus
Design Tool
- arxiv url: http://arxiv.org/abs/2007.09645v3
- Date: Thu, 25 Feb 2021 01:02:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 00:34:01.073058
- Title: Design and Analysis of a Multi-Agent E-Learning System Using Prometheus
Design Tool
- Title(参考訳): プロメテウス設計ツールを用いたマルチエージェントeラーニングシステムの設計と解析
- Authors: Kennedy E. Ehimwenma and Sujatha Krishnamoorthy
- Abstract要約: 本稿では,5つの対話エージェントの事前評価システムのモデル化にPrometheus AUMLアプローチを用いる。
プレアセスメントシステム(Pre-Acessment System)は,学生の事前学習スキルの評価を支援するために開発された,マルチエージェントベースのeラーニングシステムである。
- 参考スコア(独自算出の注目度): 3.04585143845864
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Agent unified modeling languages (AUML) are agent-oriented approaches that
supports the specification, design, visualization and documentation of an
agent-based system. This paper presents the use of Prometheus AUML approach for
the modeling of a Pre-assessment System of five interactive agents. The
Pre-assessment System, as previously reported, is a multi-agent based
e-learning system that is developed to support the assessment of prior learning
skills in students so as to classify their skills and make recommendation for
their learning. This paper discusses the detailed design approach of the system
in a step-by-step manner; and domain knowledge abstraction and organization in
the system. In addition, the analysis of the data collated and models of
prediction for future pre-assessment results are also presented.
- Abstract(参考訳): エージェント統合モデリング言語(AUML)はエージェントベースのシステムの仕様、設計、視覚化、ドキュメントをサポートするエージェント指向のアプローチである。
本稿では,5つの対話エージェントの事前評価システムのモデル化にPrometheus AUMLアプローチを用いる。
前述したように、事前評価システム(pre-assesment system)は、学生の事前学習スキルの評価を支援し、スキルを分類し、学習の推奨を行うマルチエージェントベースのe-ラーニングシステムである。
本稿では,システムの詳細な設計手法と,システムにおけるドメイン知識の抽象化と組織化について述べる。
また、データ照合の分析や将来の事前評価結果の予測モデルについても述べる。
関連論文リスト
- GUI Agents with Foundation Models: A Comprehensive Survey [52.991688542729385]
この調査は(M)LLMベースのGUIエージェントに関する最近の研究を集約する。
データ、フレームワーク、アプリケーションにおける重要なイノベーションを強調します。
本稿では, (M)LLM ベースの GUI エージェントの分野におけるさらなる発展を期待する。
論文 参考訳(メタデータ) (2024-11-07T17:28:10Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - A process algebraic framework for multi-agent dynamic epistemic systems [55.2480439325792]
本稿では,マルチエージェント,知識ベース,動的システムのモデリングと解析のための統合フレームワークを提案する。
モデリング側では,このようなフレームワークを実用的な目的に使いやすくするプロセス代数的,エージェント指向の仕様言語を提案する。
論文 参考訳(メタデータ) (2024-07-24T08:35:50Z) - Agent-E: From Autonomous Web Navigation to Foundational Design Principles in Agentic Systems [1.079505444748609]
本稿では,新しいWebエージェントであるAgent-Eの構築について紹介する。
Agent-Eは、最先端のWebエージェントよりも多くのアーキテクチャ改善を導入している。
我々は,Agent-Eが他のSOTAテキストおよびマルチモーダルWebエージェントを,ほとんどのカテゴリで10~30%上回っていることを示す。
論文 参考訳(メタデータ) (2024-07-17T21:44:28Z) - Ask-before-Plan: Proactive Language Agents for Real-World Planning [68.08024918064503]
プロアクティブエージェントプランニングでは、ユーザエージェントの会話とエージェント環境のインタラクションに基づいて、言語エージェントが明確化のニーズを予測する必要がある。
本稿では,明確化,実行,計画の3つのエージェントからなる新しいマルチエージェントフレームワーク,Clarification-Execution-Planning(textttCEP)を提案する。
論文 参考訳(メタデータ) (2024-06-18T14:07:28Z) - Interpretable and Explainable Machine Learning Methods for Predictive
Process Monitoring: A Systematic Literature Review [1.3812010983144802]
本稿では,機械学習モデル(ML)の予測プロセスマイニングの文脈における説明可能性と解釈可能性について,系統的に検討する。
我々は、様々なアプリケーション領域にまたがる現在の方法論とその応用の概要を概観する。
我々の研究は、プロセス分析のためのより信頼性が高く透明で効果的なインテリジェントシステムの開発と実装方法について、研究者や実践者がより深く理解することを目的としている。
論文 参考訳(メタデータ) (2023-12-29T12:43:43Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
本研究は,最先端の大規模言語モデル(LLM)を活用した,本格的な知的チューリングシステムの開発を探求する。
このシステムは、相互に接続された3つのコアプロセス(相互作用、反射、反応)に分けられる。
各プロセスは LLM ベースのツールと動的に更新されたメモリモジュールによって実装される。
論文 参考訳(メタデータ) (2023-09-15T02:42:03Z) - Understanding User Intent Modeling for Conversational Recommender
Systems: A Systematic Literature Review [1.3630870408844922]
我々は,会話レコメンデーションシステムの設計によく使用されるモデルについて,系統的な文献レビューを行った。
我々は,研究者がシステムに最も適したモデルを選択するのを支援するための意思決定モデルを開発した。
本研究は,より効果的でパーソナライズされた対話型レコメンデーションシステムの開発を支援する,ユーザ意図モデリングの実践的洞察と包括的理解に寄与する。
論文 参考訳(メタデータ) (2023-08-05T22:50:21Z) - MLTEing Models: Negotiating, Evaluating, and Documenting Model and
System Qualities [1.1352560842946413]
MLTEは機械学習モデルとシステムを評価するためのフレームワークと実装である。
最先端の評価テクニックを組織プロセスにコンパイルする。
MLTEツールは、モデル要件を表現するためにチームが使用できるドメイン固有の言語を提供することで、このプロセスをサポートする。
論文 参考訳(メタデータ) (2023-03-03T15:10:38Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
近年の予測機械学習の進歩は、製造における様々なユースケースに応用されている。
ほとんどの研究は、それに関連する不確実性に対処することなく予測精度を最大化することに焦点を当てた。
本稿では,機械学習における不確実性の原因を特定し,不確実性下での機械学習システムの成功基準を確立する。
論文 参考訳(メタデータ) (2021-07-28T10:28:05Z) - A Systematic Literature Review on Federated Machine Learning: From A
Software Engineering Perspective [9.315446698757768]
フェデレートラーニング(Federated Learning)は、クライアントがローカルモデルをトレーニングし、ローカルモデル更新に基づいてグローバルモデルを定式化する、新たな機械学習パラダイムである。
ソフトウェア工学の観点から,231の初等研究に基づいて,系統的な文献レビューを行う。
データ合成は, 背景理解, 要件分析, アーキテクチャ設計, 実装, 評価を含む, 統合学習システムのライフサイクルをカバーする。
論文 参考訳(メタデータ) (2020-07-22T11:59:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。