論文の概要: Interpretable and Explainable Machine Learning Methods for Predictive
Process Monitoring: A Systematic Literature Review
- arxiv url: http://arxiv.org/abs/2312.17584v1
- Date: Fri, 29 Dec 2023 12:43:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-02 10:18:55.026304
- Title: Interpretable and Explainable Machine Learning Methods for Predictive
Process Monitoring: A Systematic Literature Review
- Title(参考訳): 予測プロセスモニタリングのための解釈可能かつ説明可能な機械学習手法:体系的文献レビュー
- Authors: Nijat Mehdiyev, Maxim Majlatow and Peter Fettke
- Abstract要約: 本稿では,機械学習モデル(ML)の予測プロセスマイニングの文脈における説明可能性と解釈可能性について,系統的に検討する。
我々は、様々なアプリケーション領域にまたがる現在の方法論とその応用の概要を概観する。
我々の研究は、プロセス分析のためのより信頼性が高く透明で効果的なインテリジェントシステムの開発と実装方法について、研究者や実践者がより深く理解することを目的としている。
- 参考スコア(独自算出の注目度): 1.3812010983144802
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a systematic literature review (SLR) on the
explainability and interpretability of machine learning (ML) models within the
context of predictive process mining, using the PRISMA framework. Given the
rapid advancement of artificial intelligence (AI) and ML systems, understanding
the "black-box" nature of these technologies has become increasingly critical.
Focusing specifically on the domain of process mining, this paper delves into
the challenges of interpreting ML models trained with complex business process
data. We differentiate between intrinsically interpretable models and those
that require post-hoc explanation techniques, providing a comprehensive
overview of the current methodologies and their applications across various
application domains. Through a rigorous bibliographic analysis, this research
offers a detailed synthesis of the state of explainability and interpretability
in predictive process mining, identifying key trends, challenges, and future
directions. Our findings aim to equip researchers and practitioners with a
deeper understanding of how to develop and implement more trustworthy,
transparent, and effective intelligent systems for predictive process
analytics.
- Abstract(参考訳): 本稿では, PRISMAフレームワークを用いて, 予測プロセスマイニングの文脈における機械学習モデルの説明可能性と解釈可能性について, 体系的文献レビュー(SLR)を提案する。
人工知能(AI)とMLシステムの急速な進歩を踏まえ、これらの技術の「ブラックボックス」の性質を理解することがますます重要になっている。
プロセスマイニングの領域に特化して、複雑なビジネスプロセスデータでトレーニングされたMLモデルを解釈する際の課題を考察する。
我々は本質的に解釈可能なモデルとポストホックな説明技術を必要とするモデルとを区別し、現在の方法論とそれらの様々なアプリケーションドメインにまたがるアプリケーションの概要を提供する。
本研究は厳密な書誌分析を通じて,予測プロセスマイニングにおける説明可能性と解釈可能性の状態を詳細に合成し,重要な傾向,課題,今後の方向性を明らかにする。
本研究の目的は,より信頼性が高く,透明性が高く,効果的な知的システムを開発・実装する方法について,研究者や実践者により深く理解させることである。
関連論文リスト
- Causal Inference Tools for a Better Evaluation of Machine Learning [0.0]
本稿では、通常最小方形回帰(OLS)、可変解析(ANOVA)、ロジスティック回帰(ロジスティック回帰)などの重要な統計手法を紹介する。
この文書は研究者や実践者のガイドとして機能し、これらのテクニックがモデル行動、パフォーマンス、公平性に対する深い洞察を提供する方法について詳述している。
論文 参考訳(メタデータ) (2024-10-02T10:03:29Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - A Review of AI and Machine Learning Contribution in Predictive Business Process Management (Process Enhancement and Process Improvement Approaches) [4.499009117849108]
我々は、ビジネスプロセス管理におけるAI/MLの統合を検討するため、学術文献の体系的なレビューを行う。
ビジネスプロセス管理とプロセスマップでは、AI/MLはプロセスメトリクスの運用データを使用して大幅に改善されている。
論文 参考訳(メタデータ) (2024-07-07T18:26:00Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
大規模言語モデル(LLM)は、自然言語処理における印象的な能力を示している。
本稿では,トランスフォーマーに基づく言語モデルを記述する手法について,説明可能性の分類法を紹介した。
論文 参考訳(メタデータ) (2023-09-02T22:14:26Z) - Designing Explainable Predictive Machine Learning Artifacts: Methodology
and Practical Demonstration [0.0]
さまざまな業界の企業による意思決定者は、現代の機械学習アルゴリズムに基づくアプリケーションを採用することに、いまだに消極的だ。
我々はこの問題を、高度な機械学習アルゴリズムを「ブラックボックス」として広く支持されている見解に当てはめている。
本研究では,設計科学研究から方法論的知識を統一する手法を開発し,最先端の人工知能を用いた予測分析手法を提案する。
論文 参考訳(メタデータ) (2023-06-20T15:11:26Z) - Explainable Artificial Intelligence for Improved Modeling of Processes [6.29494485203591]
我々は,現代的なトランスフォーマーアーキテクチャと,より古典的なプロセス規則性モデリングの機械学習技術の性能を評価する。
MLモデルは重要な結果を予測することができ、注意機構やXAIコンポーネントが基礎となるプロセスに新たな洞察を与えることを示す。
論文 参考訳(メタデータ) (2022-12-01T17:56:24Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
本稿では、プロセス結果予測の分野における説明可能性モデルと説明可能性モデルの忠実性を通して、説明可能性を定義する。
本稿では,イベントログの仕様に基づいて適切なモデルを選択することのできる,X-MOPというガイドラインのセットを提案する。
論文 参考訳(メタデータ) (2022-03-30T05:59:50Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - Explainable AI Enabled Inspection of Business Process Prediction Models [2.5229940062544496]
本稿では,モデル説明を用いて,機械学習の予測によって適用された推論を解析する手法を提案する。
本手法の新たな貢献は,解釈可能な機械学習機構によって生成された説明と,過去のプロセス実行を記録するイベントログから抽出された文脈的,あるいはドメイン的知識の両方を活用するモデル検査の提案である。
論文 参考訳(メタデータ) (2021-07-16T06:51:18Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。