Class-wise Dynamic Graph Convolution for Semantic Segmentation
- URL: http://arxiv.org/abs/2007.09690v1
- Date: Sun, 19 Jul 2020 15:26:50 GMT
- Title: Class-wise Dynamic Graph Convolution for Semantic Segmentation
- Authors: Hanzhe Hu, Deyi Ji, Weihao Gan, Shuai Bai, Wei Wu, Junjie Yan
- Abstract summary: We propose a class-wise dynamic graph convolution (CDGC) module to adaptively propagate information.
We also introduce the Class-wise Dynamic Graph Convolution Network(CDGCNet), which consists of two main parts including the CDGC module and a basic segmentation network.
We conduct extensive experiments on three popular semantic segmentation benchmarks including Cityscapes, PASCAL VOC 2012 and COCO Stuff.
- Score: 63.08061813253613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works have made great progress in semantic segmentation by exploiting
contextual information in a local or global manner with dilated convolutions,
pyramid pooling or self-attention mechanism. In order to avoid potential
misleading contextual information aggregation in previous works, we propose a
class-wise dynamic graph convolution (CDGC) module to adaptively propagate
information. The graph reasoning is performed among pixels in the same class.
Based on the proposed CDGC module, we further introduce the Class-wise Dynamic
Graph Convolution Network(CDGCNet), which consists of two main parts including
the CDGC module and a basic segmentation network, forming a coarse-to-fine
paradigm. Specifically, the CDGC module takes the coarse segmentation result as
class mask to extract node features for graph construction and performs dynamic
graph convolutions on the constructed graph to learn the feature aggregation
and weight allocation. Then the refined feature and the original feature are
fused to get the final prediction. We conduct extensive experiments on three
popular semantic segmentation benchmarks including Cityscapes, PASCAL VOC 2012
and COCO Stuff, and achieve state-of-the-art performance on all three
benchmarks.
Related papers
- GC-Bench: An Open and Unified Benchmark for Graph Condensation [54.70801435138878]
We develop a comprehensive Graph Condensation Benchmark (GC-Bench) to analyze the performance of graph condensation.
GC-Bench systematically investigates the characteristics of graph condensation in terms of the following dimensions: effectiveness, transferability, and complexity.
We have developed an easy-to-use library for training and evaluating different GC methods to facilitate reproducible research.
arXiv Detail & Related papers (2024-06-30T07:47:34Z) - Generative and Contrastive Paradigms Are Complementary for Graph
Self-Supervised Learning [56.45977379288308]
Masked autoencoder (MAE) learns to reconstruct masked graph edges or node features.
Contrastive Learning (CL) maximizes the similarity between augmented views of the same graph.
We propose graph contrastive masked autoencoder (GCMAE) framework to unify MAE and CL.
arXiv Detail & Related papers (2023-10-24T05:06:06Z) - From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited [51.24526202984846]
Graph-based semi-supervised learning (GSSL) has long been a hot research topic.
graph convolutional networks (GCNs) have become the predominant techniques for their promising performance.
arXiv Detail & Related papers (2023-09-24T10:10:21Z) - Local Structure-aware Graph Contrastive Representation Learning [12.554113138406688]
We propose a Local Structure-aware Graph Contrastive representation Learning method (LS-GCL) to model the structural information of nodes from multiple views.
For the local view, the semantic subgraph of each target node is input into a shared GNN encoder to obtain the target node embeddings at the subgraph-level.
For the global view, considering the original graph preserves indispensable semantic information of nodes, we leverage the shared GNN encoder to learn the target node embeddings at the global graph-level.
arXiv Detail & Related papers (2023-08-07T03:23:46Z) - Dual Contrastive Attributed Graph Clustering Network [6.796682703663566]
We propose a generic framework called Dual Contrastive Attributed Graph Clustering Network (DCAGC)
In DCAGC, by leveraging Neighborhood Contrast Module, the similarity of the neighbor nodes will be maximized and the quality of the node representation will be improved.
All the modules of DCAGC are trained and optimized in a unified framework, so the learned node representation contains clustering-oriented messages.
arXiv Detail & Related papers (2022-06-16T03:17:01Z) - CGC: Contrastive Graph Clustering for Community Detection and Tracking [33.48636823444052]
We develop CGC, a novel end-to-end framework for graph clustering.
CGC learns node embeddings and cluster assignments in a contrastive graph learning framework.
We extend CGC for time-evolving data, where temporal graph clustering is performed in an incremental learning fashion.
arXiv Detail & Related papers (2022-04-05T17:34:47Z) - Heuristic Semi-Supervised Learning for Graph Generation Inspired by
Electoral College [80.67842220664231]
We propose a novel pre-processing technique, namely ELectoral COllege (ELCO), which automatically expands new nodes and edges to refine the label similarity within a dense subgraph.
In all setups tested, our method boosts the average score of base models by a large margin of 4.7 points, as well as consistently outperforms the state-of-the-art.
arXiv Detail & Related papers (2020-06-10T14:48:48Z) - Adaptive Graph Convolutional Network with Attention Graph Clustering for
Co-saliency Detection [35.23956785670788]
We present a novel adaptive graph convolutional network with attention graph clustering (GCAGC)
We develop an attention graph clustering algorithm to discriminate the common objects from all the salient foreground objects in an unsupervised fashion.
We evaluate our proposed GCAGC method on three cosaliency detection benchmark datasets.
arXiv Detail & Related papers (2020-03-13T09:35:59Z) - Graph Convolution Machine for Context-aware Recommender System [59.50474932860843]
We extend the advantages of graph convolutions to context-aware recommender system (CARS)
We propose textitGraph Convolution Machine (GCM), an end-to-end framework that consists of three components: an encoder, graph convolution layers, and a decoder.
We conduct experiments on three real-world datasets from Yelp and Amazon, validating the effectiveness of GCM and the benefits of performing graph convolutions for CARS.
arXiv Detail & Related papers (2020-01-30T15:32:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.