論文の概要: Deep Anomaly Detection for Time-series Data in Industrial IoT: A
Communication-Efficient On-device Federated Learning Approach
- arxiv url: http://arxiv.org/abs/2007.09712v1
- Date: Sun, 19 Jul 2020 16:47:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 00:06:55.755472
- Title: Deep Anomaly Detection for Time-series Data in Industrial IoT: A
Communication-Efficient On-device Federated Learning Approach
- Title(参考訳): 産業用iotにおける時系列データの深部異常検出--通信効率の高いオンデバイスフェデレーション学習アプローチ
- Authors: Yi Liu, Sahil Garg, Jiangtian Nie, Yang Zhang, Zehui Xiong, Jiawen
Kang, M. Shamim Hossain
- Abstract要約: 本稿では,IIoTにおける時系列データ検出のための,新しい通信効率の高いデバイス上でのフェデレーション学習(FL)に基づく深層異常検出フレームワークを提案する。
まず、分散エッジデバイスが協調して異常検出モデルを訓練し、その一般化能力を向上させるためのFLフレームワークを導入する。
次に,アテンションメカニズムに基づく畳み込みニューラルネットワーク-Long Short Term Memory (AMCNN-LSTM) モデルを提案し,異常を正確に検出する。
第三に,提案したフレームワークを産業異常検出のタイムラインに適用するために,トップテキスト選択に基づく勾配圧縮機構を提案する。
- 参考スコア(独自算出の注目度): 40.992167455141946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since edge device failures (i.e., anomalies) seriously affect the production
of industrial products in Industrial IoT (IIoT), accurately and timely
detecting anomalies is becoming increasingly important. Furthermore, data
collected by the edge device may contain the user's private data, which is
challenging the current detection approaches as user privacy is calling for the
public concern in recent years. With this focus, this paper proposes a new
communication-efficient on-device federated learning (FL)-based deep anomaly
detection framework for sensing time-series data in IIoT. Specifically, we
first introduce a FL framework to enable decentralized edge devices to
collaboratively train an anomaly detection model, which can improve its
generalization ability. Second, we propose an Attention Mechanism-based
Convolutional Neural Network-Long Short Term Memory (AMCNN-LSTM) model to
accurately detect anomalies. The AMCNN-LSTM model uses attention
mechanism-based CNN units to capture important fine-grained features, thereby
preventing memory loss and gradient dispersion problems. Furthermore, this
model retains the advantages of LSTM unit in predicting time series data.
Third, to adapt the proposed framework to the timeliness of industrial anomaly
detection, we propose a gradient compression mechanism based on Top-\textit{k}
selection to improve communication efficiency. Extensive experiment studies on
four real-world datasets demonstrate that the proposed framework can accurately
and timely detect anomalies and also reduce the communication overhead by 50\%
compared to the federated learning framework that does not use a gradient
compression scheme.
- Abstract(参考訳): エッジデバイス障害(すなわち異常)は産業用iot(iiot)における産業製品生産に深刻な影響を与えるため、正確かつタイムリーな異常検出がますます重要になっている。
さらに、エッジデバイスが収集したデータは、ユーザのプライベートデータを含む可能性があり、近年、ユーザのプライバシが公衆の懸念を呼びかけているため、現在の検出アプローチに挑戦している。
本稿では,iiotにおける時系列データ検出のための新しい通信効率の高いデバイス上でのフェデレーション学習(fl)ベースの深部異常検出フレームワークを提案する。
具体的には,まず,分散エッジデバイスが協調的に異常検出モデルを訓練し,一般化能力を向上させるためのflフレームワークについて紹介する。
次に,アテンションメカニズムに基づく畳み込みニューラルネットワーク-Long Short Term Memory (AMCNN-LSTM)モデルを提案する。
AMCNN-LSTMモデルは、注意機構に基づくCNNユニットを使用して重要なきめ細かい特徴を捉え、メモリ損失や勾配分散の問題を防止する。
さらに、このモデルは時系列データの予測におけるLSTMユニットの利点を保っている。
第三に,提案手法を産業異常検出のタイムラインに適応させるため,Top-\textit{k}選択に基づく勾配圧縮機構を提案し,通信効率を向上させる。
4つの実世界のデータセットに関する大規模な実験により、提案フレームワークは、勾配圧縮スキームを使用しない連合学習フレームワークと比較して、異常を正確にタイムリーに検出し、通信オーバーヘッドを50%削減できることを示した。
関連論文リスト
- Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
異常と欠落したデータは、産業応用における厄介な問題を構成する。
ディープラーニングによる異常検出が重要な方向として現れている。
エッジデバイスで収集されたデータは、ユーザのプライバシを含む。
論文 参考訳(メタデータ) (2024-11-06T15:38:31Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - A Bi-LSTM Autoencoder Framework for Anomaly Detection -- A Case Study of
a Wind Power Dataset [2.094022863940315]
異常(英: Anomalies)とは、通常および同質の事象から逸脱するデータポイントまたはイベントを指す。
本研究では,Bi-LSTMアーキテクチャとAutoencoderを組み合わせた時系列異常検出フレームワークを提案する。
Bi-LSTM Autoencoderモデルは96.79%の分類精度を達成し、より一般的なLSTM Autoencoderモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-03-17T00:24:28Z) - TinyAD: Memory-efficient anomaly detection for time series data in
Industrial IoT [43.207210990362825]
我々は,リアルタイムな異常検出のためのCNNのオンボード推論を効率的に行うための,Tiny Anomaly Detection (TinyAD) という新しいフレームワークを提案する。
CNNのピークメモリ消費を低減するため、我々は2つの相補的戦略、 in-place と patch-by-patch のメモリ再スケジューリングについて検討する。
我々のフレームワークは、オーバーヘッドを無視してピークメモリ消費を2~5倍削減できる。
論文 参考訳(メタデータ) (2023-03-07T02:56:15Z) - Federated Learning with Correlated Data: Taming the Tail for Age-Optimal
Industrial IoT [55.62157530259969]
本稿では,ピークAoI要求に基づくセンサの送信電力最小化と待ち時間に対する確率的制約について検討する。
本稿では,センサのトレーニングデータ間の相関を考慮した局所モデル選択手法を提案する。
数値計算の結果,送信電力,ピークAoI,遅延尾部分布のトレードオフが示された。
論文 参考訳(メタデータ) (2021-08-17T08:38:31Z) - An Efficient One-Class SVM for Anomaly Detection in the Internet of
Things [25.78558553080511]
安全なモノのインターネット(IoT)デバイスは、重要なインフラストラクチャとインターネット全体に重大な脅威をもたらします。
これらのデバイスから異常な行動を検出することは 依然として重要です
ワンクラスサポートベクターマシン(OCSVM)は、ノベルティ検出のための最先端のアプローチの1つです。
論文 参考訳(メタデータ) (2021-04-22T15:59:56Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。