Self-Loop Uncertainty: A Novel Pseudo-Label for Semi-Supervised Medical
Image Segmentation
- URL: http://arxiv.org/abs/2007.09854v1
- Date: Mon, 20 Jul 2020 02:52:07 GMT
- Title: Self-Loop Uncertainty: A Novel Pseudo-Label for Semi-Supervised Medical
Image Segmentation
- Authors: Yuexiang Li, Jiawei Chen, Xinpeng Xie, Kai Ma, Yefeng Zheng
- Abstract summary: We propose a semi-supervised approach to train neural networks with limited labeled data and a large quantity of unlabeled images for medical image segmentation.
A novel pseudo-label (namely self-loop uncertainty) is adopted as the ground-truth for the unlabeled images to augment the training set and boost the segmentation accuracy.
- Score: 30.644905857223474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Witnessing the success of deep learning neural networks in natural image
processing, an increasing number of studies have been proposed to develop
deep-learning-based frameworks for medical image segmentation. However, since
the pixel-wise annotation of medical images is laborious and expensive, the
amount of annotated data is usually deficient to well-train a neural network.
In this paper, we propose a semi-supervised approach to train neural networks
with limited labeled data and a large quantity of unlabeled images for medical
image segmentation. A novel pseudo-label (namely self-loop uncertainty),
generated by recurrently optimizing the neural network with a self-supervised
task, is adopted as the ground-truth for the unlabeled images to augment the
training set and boost the segmentation accuracy. The proposed self-loop
uncertainty can be seen as an approximation of the uncertainty estimation
yielded by ensembling multiple models with a significant reduction of inference
time. Experimental results on two publicly available datasets demonstrate the
effectiveness of our semi-supervied approach.
Related papers
- Unsupervised Segmentation of Fetal Brain MRI using Deep Learning
Cascaded Registration [2.494736313545503]
Traditional deep learning-based automatic segmentation requires extensive training data with ground-truth labels.
We propose a novel method based on multi-atlas segmentation, that accurately segments multiple tissues without relying on labeled data for training.
Our method employs a cascaded deep learning network for 3D image registration, which computes small, incremental deformations to the moving image to align it precisely with the fixed image.
arXiv Detail & Related papers (2023-07-07T13:17:12Z) - Self-Supervised Endoscopic Image Key-Points Matching [1.3764085113103222]
This paper proposes a novel self-supervised approach for endoscopic image matching based on deep learning techniques.
Our method outperformed standard hand-crafted local feature descriptors in terms of precision and recall.
arXiv Detail & Related papers (2022-08-24T10:47:21Z) - Self-Supervised-RCNN for Medical Image Segmentation with Limited Data
Annotation [0.16490701092527607]
We propose an alternative deep learning training strategy based on self-supervised pretraining on unlabeled MRI scans.
Our pretraining approach first, randomly applies different distortions to random areas of unlabeled images and then predicts the type of distortions and loss of information.
The effectiveness of the proposed method for segmentation tasks in different pre-training and fine-tuning scenarios is evaluated.
arXiv Detail & Related papers (2022-07-17T13:28:52Z) - Self-Supervised Learning as a Means To Reduce the Need for Labeled Data
in Medical Image Analysis [64.4093648042484]
We use a dataset of chest X-ray images with bounding box labels for 13 different classes of anomalies.
We show that it is possible to achieve similar performance to a fully supervised model in terms of mean average precision and accuracy with only 60% of the labeled data.
arXiv Detail & Related papers (2022-06-01T09:20:30Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
We propose a novel uncertainty-guided semi-supervised learning based on a student-teacher approach for training the segmentation network.
The proposed framework is a key contribution and applicable for biomedical image segmentation across various imaging modalities.
arXiv Detail & Related papers (2021-03-02T23:14:25Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
We introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification.
Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding.
arXiv Detail & Related papers (2020-09-27T12:30:30Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
We propose an unpaired image-to-image translation where the goal is to learn the mapping between an input endoscopic image and a corresponding annotation.
Our approach allows to train image segmentation models without the need to acquire expensive annotations.
We test our proposed method on Endovis 2017 challenge dataset and show that it is competitive with supervised segmentation methods.
arXiv Detail & Related papers (2020-07-09T01:39:39Z) - A Spatially Constrained Deep Convolutional Neural Network for Nerve
Fiber Segmentation in Corneal Confocal Microscopic Images using Inaccurate
Annotations [10.761046991755311]
We propose a spatially constrained deep convolutional neural network (DCNN) to achieve smooth and robust image segmentation.
The proposed method has been evaluated based on corneal confocal microscopic ( CCM) images for nerve fiber segmentation.
arXiv Detail & Related papers (2020-04-20T16:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.