論文の概要: When deep learning meets causal inference: a computational framework for
drug repurposing from real-world data
- arxiv url: http://arxiv.org/abs/2007.10152v1
- Date: Thu, 16 Jul 2020 21:30:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 00:09:19.782166
- Title: When deep learning meets causal inference: a computational framework for
drug repurposing from real-world data
- Title(参考訳): ディープラーニングが因果推論を満たすとき: 現実世界のデータから薬物を再利用するための計算フレームワーク
- Authors: Ruoqi Liu, Lai Wei, Ping Zhang
- Abstract要約: 既存の薬物精製法は、ヒトに適用した場合に翻訳上の問題が存在する可能性がある。
薬物再資源化のための複数の候補の生成と試験を行うための,効率的かつ簡便なフレームワークを提案する。
本研究の枠組みは, 冠動脈疾患(CAD)の症例研究において, 55の薬剤候補が各種疾患の予後に及ぼす影響を評価することで実証する。
- 参考スコア(独自算出の注目度): 12.68717103979673
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Drug repurposing is an effective strategy to identify new uses for existing
drugs, providing the quickest possible transition from bench to bedside.
Existing methods for drug repurposing that mainly focus on pre-clinical
information may exist translational issues when applied to human beings. Real
world data (RWD), such as electronic health records and insurance claims,
provide information on large cohorts of users for many drugs. Here we present
an efficient and easily-customized framework for generating and testing
multiple candidates for drug repurposing using a retrospective analysis of
RWDs. Building upon well-established causal inference and deep learning
methods, our framework emulates randomized clinical trials for drugs present in
a large-scale medical claims database. We demonstrate our framework in a case
study of coronary artery disease (CAD) by evaluating the effect of 55
repurposing drug candidates on various disease outcomes. We achieve 6 drug
candidates that significantly improve the CAD outcomes but not have been
indicated for treating CAD, paving the way for drug repurposing.
- Abstract(参考訳): 薬物再服用は、既存の薬物の新規使用を特定する効果的な戦略であり、ベンチからベッドサイドへの最も早い移行を可能にする。
臨床前情報に主に焦点をあてた既存の薬物再提案法は、ヒトに適用される場合の翻訳問題が存在する可能性がある。
電子健康記録や保険請求書などのリアル・ワールド・データ(RWD)は、多くの薬物の利用者の膨大なコホートに関する情報を提供する。
本稿では、RWDの振り返り分析を用いて、医薬品再資源化の候補を複数生成し、検証するための効率的で簡便なフレームワークを提案する。
確立された因果推論と深層学習法に基づいて,大規模医療クレームデータベースに存在する薬物のランダム化臨床試験をエミュレートする。
本研究の枠組みは, 冠動脈疾患(CAD)の症例研究において, 55の薬剤候補が各種疾患の予後に及ぼす影響を評価することで実証する。
CADの成績は有意に改善するが,CAD治療には役立たず,薬物再資源化の道筋をたどる6つの薬剤候補を達成した。
関連論文リスト
- DrugCLIP: Contrastive Drug-Disease Interaction For Drug Repurposing [4.969453745531116]
DrugCLIPは、ネガティブなラベルなしで薬物と疾患の相互作用を学ぶための対照的な学習方法である。
実地臨床試験記録に基づく薬物再服用データセットをキュレートした。
論文 参考訳(メタデータ) (2024-07-02T13:41:59Z) - Learning to Describe for Predicting Zero-shot Drug-Drug Interactions [54.172575323610175]
薬物と薬物の相互作用は同時投与の有効性を損なう可能性がある。
従来のDDI予測の計算手法では、知識不足のため、新しい薬物の相互作用を捉えることができない可能性がある。
言語モデルに基づくDDI予測器と強化学習(RL)に基づく情報セレクタを用いたテキストDDIを提案する。
論文 参考訳(メタデータ) (2024-03-13T09:42:46Z) - Modeling Path Importance for Effective Alzheimer's Disease Drug
Repurposing [8.153491945775734]
薬物再資源化のための新しいネットワーク方式 MPI (Modeling Path Importance) を提案する。
MPIは学習ノードの埋め込みを通じて重要なパスを優先し、ネットワークの豊富な構造情報を効果的にキャプチャする。
上位50の薬物のうち、MPIは、基準値よりも20.0%の薬物を抗AD抗体で優先している。
論文 参考訳(メタデータ) (2023-10-23T17:24:11Z) - Zero-shot Learning of Drug Response Prediction for Preclinical Drug
Screening [38.94493676651818]
ゼロショット学習ソリューションを提案する。
予防的薬物スクリーニングの課題です
具体的には、MSDAと呼ばれるマルチブランチマルチソースドメイン適応テスト拡張プラグインを提案する。
論文 参考訳(メタデータ) (2023-10-05T05:55:41Z) - NeuroCADR: Drug Repurposing to Reveal Novel Anti-Epileptic Drug
Candidates Through an Integrated Computational Approach [0.0]
薬物再資源化は、新しい目的のために既存の薬物を再割り当てすることを含む薬物発見の新たなアプローチである。
提案するアルゴリズムはNeuroCADRであり,k-nearest neighbor algorithm (KNN),ランダム森林分類,決定木からなるマルチプログレッシブアプローチによる創薬システムである。
データは病気、症状、遺伝子、および関連する薬物分子間の相互作用からなるデータベースから作成され、その後バイナリで表現されたデータセットにコンパイルされた。
NeuroCADRは、臨床試験によってさらに承認されるてんかんの新規薬物候補を特定した。
論文 参考訳(メタデータ) (2023-09-04T03:21:43Z) - ADRNet: A Generalized Collaborative Filtering Framework Combining
Clinical and Non-Clinical Data for Adverse Drug Reaction Prediction [49.56476929112382]
逆薬物反応(ADR)予測は、医療と薬物発見において重要な役割を果たす。
ADRNetは、臨床データと非臨床データを組み合わせた一般的な協調フィルタリングフレームワークである。
論文 参考訳(メタデータ) (2023-08-03T11:28:12Z) - Knowledge-Driven New Drug Recommendation [88.35607943144261]
既存の薬物と新薬のギャップを埋めるために, 薬物依存型マルチフェノタイプ数発学習機を開発した。
EDGEは外部薬効知識ベースを用いて偽陰性監視信号を除去する。
その結果, EDGEは, ROC-AUCスコアよりも7.3%向上していることがわかった。
論文 参考訳(メタデータ) (2022-10-11T16:07:52Z) - Multi-View Substructure Learning for Drug-Drug Interaction Prediction [69.34322811160912]
DDI予測のための新しいマルチビュードラッグサブ構造ネットワーク(MSN-DDI)を提案する。
MSN-DDIは、単一の薬物(イントラビュー)と薬物ペア(インタービュー)の両方の表現から化学的サブ構造を同時に学習し、そのサブ構造を利用して、薬物表現を反復的に更新する。
総合的な評価では、MSN-DDIは、トランスダクティブ・セッティングの下で比較的改善された19.32%と99%以上の精度を達成することで、既存の薬物に対するDDI予測をほぼ解決したことを示している。
論文 参考訳(メタデータ) (2022-03-28T05:44:29Z) - Deep learning for drug repurposing: methods, databases, and applications [54.08583498324774]
新しい治療法のために既存の薬物を再利用することは、実験コストの低減で薬物開発を加速する魅力的な解決策である。
本稿では,薬物再資源化のための深層学習手法とツールの活用に関するガイドラインを紹介する。
論文 参考訳(メタデータ) (2022-02-08T09:42:08Z) - SafeDrug: Dual Molecular Graph Encoders for Safe Drug Recommendations [59.590084937600764]
医薬品の分子構造とDDIのモデルを明確に活用するために、SafeDrugというDDI制御可能な薬物推奨モデルを提案する。
ベンチマークデータセットでは、SafeDrugはDDIを19.43%削減し、Jaccardの推奨薬物と実際に処方された薬物の組み合わせの2.88%を改善します。
論文 参考訳(メタデータ) (2021-05-05T00:20:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。