論文の概要: DrugCLIP: Contrastive Drug-Disease Interaction For Drug Repurposing
- arxiv url: http://arxiv.org/abs/2407.02265v1
- Date: Tue, 2 Jul 2024 13:41:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 15:15:58.788451
- Title: DrugCLIP: Contrastive Drug-Disease Interaction For Drug Repurposing
- Title(参考訳): DrugCLIP: 医薬品再資源化のための対照的なドラッグ・ディスリーズ・インタラクション
- Authors: Yingzhou Lu, Yaojun Hu, Chenhao Li,
- Abstract要約: DrugCLIPは、ネガティブなラベルなしで薬物と疾患の相互作用を学ぶための対照的な学習方法である。
実地臨床試験記録に基づく薬物再服用データセットをキュレートした。
- 参考スコア(独自算出の注目度): 4.969453745531116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bringing a novel drug from the original idea to market typically requires more than ten years and billions of dollars. To alleviate the heavy burden, a natural idea is to reuse the approved drug to treat new diseases. The process is also known as drug repurposing or drug repositioning. Machine learning methods exhibited huge potential in automating drug repurposing. However, it still encounter some challenges, such as lack of labels and multimodal feature representation. To address these issues, we design DrugCLIP, a cutting-edge contrastive learning method, to learn drug and disease's interaction without negative labels. Additionally, we have curated a drug repurposing dataset based on real-world clinical trial records. Thorough empirical studies are conducted to validate the effectiveness of the proposed DrugCLIP method.
- Abstract(参考訳): オリジナルのアイデアから新しい薬を市場に出すには、通常10年以上と何十億ドルもかかる。
重度の負担を軽減するため、承認された薬物を再利用して新しい病気の治療を行うことが自然な考えである。
このプロセスは、ドラッグ・リプレイスやドラッグ・リプレースとしても知られている。
機械学習手法は、薬物再資源の自動化に大きな可能性を示した。
しかし、ラベルの欠如やマルチモーダルな特徴表現など、いくつかの課題に直面している。
これらの課題に対処するため,我々は最先端のコントラスト学習手法であるD薬CLIPを設計し,陰性ラベルを使わずに薬物と疾患の相互作用を学習する。
さらに,実地臨床試験記録に基づく薬物再服用データセットのキュレーションを行った。
提案手法の有効性を検証するために, 詳細な実験的検討を行った。
関連論文リスト
- Modeling Path Importance for Effective Alzheimer's Disease Drug
Repurposing [8.153491945775734]
薬物再資源化のための新しいネットワーク方式 MPI (Modeling Path Importance) を提案する。
MPIは学習ノードの埋め込みを通じて重要なパスを優先し、ネットワークの豊富な構造情報を効果的にキャプチャする。
上位50の薬物のうち、MPIは、基準値よりも20.0%の薬物を抗AD抗体で優先している。
論文 参考訳(メタデータ) (2023-10-23T17:24:11Z) - Zero-shot Learning of Drug Response Prediction for Preclinical Drug
Screening [38.94493676651818]
ゼロショット学習ソリューションを提案する。
予防的薬物スクリーニングの課題です
具体的には、MSDAと呼ばれるマルチブランチマルチソースドメイン適応テスト拡張プラグインを提案する。
論文 参考訳(メタデータ) (2023-10-05T05:55:41Z) - NeuroCADR: Drug Repurposing to Reveal Novel Anti-Epileptic Drug
Candidates Through an Integrated Computational Approach [0.0]
薬物再資源化は、新しい目的のために既存の薬物を再割り当てすることを含む薬物発見の新たなアプローチである。
提案するアルゴリズムはNeuroCADRであり,k-nearest neighbor algorithm (KNN),ランダム森林分類,決定木からなるマルチプログレッシブアプローチによる創薬システムである。
データは病気、症状、遺伝子、および関連する薬物分子間の相互作用からなるデータベースから作成され、その後バイナリで表現されたデータセットにコンパイルされた。
NeuroCADRは、臨床試験によってさらに承認されるてんかんの新規薬物候補を特定した。
論文 参考訳(メタデータ) (2023-09-04T03:21:43Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - Knowledge-Driven New Drug Recommendation [88.35607943144261]
既存の薬物と新薬のギャップを埋めるために, 薬物依存型マルチフェノタイプ数発学習機を開発した。
EDGEは外部薬効知識ベースを用いて偽陰性監視信号を除去する。
その結果, EDGEは, ROC-AUCスコアよりも7.3%向上していることがわかった。
論文 参考訳(メタデータ) (2022-10-11T16:07:52Z) - Deep learning for drug repurposing: methods, databases, and applications [54.08583498324774]
新しい治療法のために既存の薬物を再利用することは、実験コストの低減で薬物開発を加速する魅力的な解決策である。
本稿では,薬物再資源化のための深層学習手法とツールの活用に関するガイドラインを紹介する。
論文 参考訳(メタデータ) (2022-02-08T09:42:08Z) - SafeDrug: Dual Molecular Graph Encoders for Safe Drug Recommendations [59.590084937600764]
医薬品の分子構造とDDIのモデルを明確に活用するために、SafeDrugというDDI制御可能な薬物推奨モデルを提案する。
ベンチマークデータセットでは、SafeDrugはDDIを19.43%削減し、Jaccardの推奨薬物と実際に処方された薬物の組み合わせの2.88%を改善します。
論文 参考訳(メタデータ) (2021-05-05T00:20:48Z) - MolDesigner: Interactive Design of Efficacious Drugs with Deep Learning [61.74958429818077]
MolDesignerは、ドラッグ開発者のためのヒューマン・イン・ザ・ループ・ウェブ・ユーザ・インタフェース(UI)である。
開発者は、インターフェイスに薬物分子を描画することができる。
バックエンドでは、17以上の最先端のDLモデルが、薬物の有効性に不可欠な重要な指標の予測を生成する。
論文 参考訳(メタデータ) (2020-10-05T21:25:25Z) - Two Step Joint Model for Drug Drug Interaction Extraction [82.49278654043577]
薬物と薬物の相互作用 (DDI) テキスト分析会議 (TAC) 2018における薬物ラベルからの抽出
本稿では,DDI検出のための2段階関節モデルを提案する。
シーケンスタギングシステム(CNN-GRUエンコーダデコーダ)は、まず沈殿剤を発見し、その微細なトリガーを探索し、第2ステップで沈殿剤毎のDDIを決定する。
論文 参考訳(メタデータ) (2020-08-28T15:30:08Z) - When deep learning meets causal inference: a computational framework for
drug repurposing from real-world data [12.68717103979673]
既存の薬物精製法は、ヒトに適用した場合に翻訳上の問題が存在する可能性がある。
薬物再資源化のための複数の候補の生成と試験を行うための,効率的かつ簡便なフレームワークを提案する。
本研究の枠組みは, 冠動脈疾患(CAD)の症例研究において, 55の薬剤候補が各種疾患の予後に及ぼす影響を評価することで実証する。
論文 参考訳(メタデータ) (2020-07-16T21:30:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。