論文の概要: Object-Centric Multi-View Aggregation
- arxiv url: http://arxiv.org/abs/2007.10300v2
- Date: Tue, 21 Jul 2020 05:17:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2022-11-08 14:05:42.693051
- Title: Object-Centric Multi-View Aggregation
- Title(参考訳): オブジェクト中心のマルチビューアグリゲーション
- Authors: Shubham Tulsiani, Or Litany, Charles R. Qi, He Wang, Leonidas J.
Guibas
- Abstract要約: 本稿では,オブジェクトのスパースなビュー集合を集約して,半単純3次元表現を容積特徴格子の形で計算する手法を提案する。
我々のアプローチの鍵となるのは、カメラのポーズを明示することなく、ビューを持ち上げることができるオブジェクト中心の標準3D座標システムである。
画素から標準座標系への対称対応マッピングの計算により、未知の領域への情報伝達がより良くなることを示す。
- 参考スコア(独自算出の注目度): 86.94544275235454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an approach for aggregating a sparse set of views of an object in
order to compute a semi-implicit 3D representation in the form of a volumetric
feature grid. Key to our approach is an object-centric canonical 3D coordinate
system into which views can be lifted, without explicit camera pose estimation,
and then combined -- in a manner that can accommodate a variable number of
views and is view order independent. We show that computing a symmetry-aware
mapping from pixels to the canonical coordinate system allows us to better
propagate information to unseen regions, as well as to robustly overcome pose
ambiguities during inference. Our aggregate representation enables us to
perform 3D inference tasks like volumetric reconstruction and novel view
synthesis, and we use these tasks to demonstrate the benefits of our
aggregation approach as compared to implicit or camera-centric alternatives.
- Abstract(参考訳): 本稿では,半単純化された3次元表現を体積的特徴格子の形で計算するために,オブジェクトのスパースなビュー集合を集約する手法を提案する。
このアプローチの鍵となるのは、オブジェクト中心の標準的な3D座標システムで、カメラのポーズを明示的に見積もることなく、ビューを持ち上げ、そして組み合わせることができます。
画素から標準座標系への対称性対応マッピングの計算により、未知の領域に情報を伝達し、推論中のポーズのあいまいさを頑健に克服できることを示す。
集約表現はボリュームリコンストラクションや新たなビュー合成といった3d推論タスクを実行可能にすると同時に,これらのタスクを使用して,暗黙的あるいはカメラ中心の代替手段と比較して,アグリゲーションアプローチのメリットを実証します。
関連論文リスト
- POMATO: Marrying Pointmap Matching with Temporal Motion for Dynamic 3D Reconstruction [53.19968902152528]
POMATOは時間運動と一致する点マップを結合して動的3次元再構成を実現するための統合フレームワークである。
具体的には,RGB画素を動的および静的の両方の領域から3次元ポイントマップにマッピングすることで,明示的なマッチング関係を学習する。
本稿では,複数の下流タスクにまたがる顕著な性能を示すことによって,提案したポイントマップマッチングと時間融合のパラダイムの有効性を示す。
論文 参考訳(メタデータ) (2025-04-08T05:33:13Z) - Variational Inference for Scalable 3D Object-centric Learning [19.445804699433353]
我々は3Dシーンにおける拡張性のないオブジェクト中心表現学習の課題に取り組む。
オブジェクト中心表現学習への既存のアプローチは、より大きなシーンに一般化する際の限界を示している。
局所オブジェクト座標系におけるビュー不変3次元オブジェクト表現の学習を提案する。
論文 参考訳(メタデータ) (2023-09-25T10:23:40Z) - Occ$^2$Net: Robust Image Matching Based on 3D Occupancy Estimation for
Occluded Regions [14.217367037250296]
Occ$2$Netは、3D占有率を用いて閉塞関係をモデル化し、閉塞領域の一致点を推測する画像マッチング手法である。
本手法は実世界とシミュレーションデータセットの両方で評価し,いくつかの指標における最先端手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-08-14T13:09:41Z) - Towards Scalable Multi-View Reconstruction of Geometry and Materials [27.660389147094715]
本稿では,3次元シーンのカメラポーズ,オブジェクト形状,空間変化の両方向反射分布関数(svBRDF)のジョイントリカバリ手法を提案する。
入力は高解像度のRGBD画像であり、アクティブ照明用の点灯付き携帯型ハンドヘルドキャプチャシステムによってキャプチャされる。
論文 参考訳(メタデータ) (2023-06-06T15:07:39Z) - RelPose++: Recovering 6D Poses from Sparse-view Observations [66.6922660401558]
スパースビュー画像集合(2-8画像)から6次元カメラポーズを推定する作業に対処する。
我々は,画像対上の相対回転よりも分布を推定するネットワークを学習するRelPoseフレームワークを構築した。
最終システムは,先行技術よりも6次元ポーズ予測を大幅に改善する。
論文 参考訳(メタデータ) (2023-05-08T17:59:58Z) - RelPose: Predicting Probabilistic Relative Rotation for Single Objects
in the Wild [73.1276968007689]
本稿では、任意のオブジェクトの複数の画像からカメラ視点を推定するデータ駆動手法について述べる。
本手法は, 画像の鮮明さから, 最先端のSfM法とSLAM法より優れていることを示す。
論文 参考訳(メタデータ) (2022-08-11T17:59:59Z) - Efficient View Clustering and Selection for City-Scale 3D Reconstruction [1.1011268090482573]
本稿では,MVSアルゴリズムを任意の画像集合に拡張するための新しい手法を提案する。
提案手法は、ポーズと幾何学のほぼ均一な分布を利用して、重なり合うクラスタの集合を構築する。
クラスタリングはペアの可視情報とは独立しているため、提案アルゴリズムは既存の文献よりも高速に動作し、大規模な並列化を可能にする。
論文 参考訳(メタデータ) (2022-07-18T08:33:52Z) - Learning Canonical 3D Object Representation for Fine-Grained Recognition [77.33501114409036]
本研究では,1枚の画像から3次元空間における物体の変動を再現する微粒な物体認識のための新しいフレームワークを提案する。
我々は,物体を3次元形状とその外観の合成として表現し,カメラ視点の影響を排除した。
深部表現に3次元形状と外観を併用することにより,物体の識別表現を学習する。
論文 参考訳(メタデータ) (2021-08-10T12:19:34Z) - Shelf-Supervised Mesh Prediction in the Wild [54.01373263260449]
本研究では,物体の3次元形状とポーズを1つの画像から推定する学習手法を提案する。
まず、カメラのポーズとともに、標準フレーム内の体積表現を推定する。
粗い体積予測はメッシュベースの表現に変換され、予測されたカメラフレームでさらに洗練される。
論文 参考訳(メタデータ) (2021-02-11T18:57:10Z) - Canonical 3D Deformer Maps: Unifying parametric and non-parametric
methods for dense weakly-supervised category reconstruction [79.98689027127855]
独立オブジェクトの2次元画像の集合から学習できる共通オブジェクトカテゴリの3次元形状の表現を提案する。
提案手法は, パラメトリック変形モデル, 非パラメトリック3次元再構成, 標準埋め込みの概念に基づく新しい手法で構築する。
顔、車、鳥の野生のデータセットを3Dで再現することで、最先端の成果が得られます。
論文 参考訳(メタデータ) (2020-08-28T15:44:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。