Object-Centric Multi-View Aggregation
- URL: http://arxiv.org/abs/2007.10300v2
- Date: Tue, 21 Jul 2020 05:17:19 GMT
- Title: Object-Centric Multi-View Aggregation
- Authors: Shubham Tulsiani, Or Litany, Charles R. Qi, He Wang, Leonidas J.
Guibas
- Abstract summary: We present an approach for aggregating a sparse set of views of an object in order to compute a semi-implicit 3D representation in the form of a volumetric feature grid.
Key to our approach is an object-centric canonical 3D coordinate system into which views can be lifted, without explicit camera pose estimation.
We show that computing a symmetry-aware mapping from pixels to the canonical coordinate system allows us to better propagate information to unseen regions.
- Score: 86.94544275235454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an approach for aggregating a sparse set of views of an object in
order to compute a semi-implicit 3D representation in the form of a volumetric
feature grid. Key to our approach is an object-centric canonical 3D coordinate
system into which views can be lifted, without explicit camera pose estimation,
and then combined -- in a manner that can accommodate a variable number of
views and is view order independent. We show that computing a symmetry-aware
mapping from pixels to the canonical coordinate system allows us to better
propagate information to unseen regions, as well as to robustly overcome pose
ambiguities during inference. Our aggregate representation enables us to
perform 3D inference tasks like volumetric reconstruction and novel view
synthesis, and we use these tasks to demonstrate the benefits of our
aggregation approach as compared to implicit or camera-centric alternatives.
Related papers
- Variational Inference for Scalable 3D Object-centric Learning [19.445804699433353]
We tackle the task of scalable unsupervised object-centric representation learning on 3D scenes.
Existing approaches to object-centric representation learning show limitations in generalizing to larger scenes.
We propose to learn view-invariant 3D object representations in localized object coordinate systems.
arXiv Detail & Related papers (2023-09-25T10:23:40Z) - Occ$^2$Net: Robust Image Matching Based on 3D Occupancy Estimation for
Occluded Regions [14.217367037250296]
Occ$2$Net is an image matching method that models occlusion relations using 3D occupancy and infers matching points in occluded regions.
We evaluate our method on both real-world and simulated datasets and demonstrate its superior performance over state-of-the-art methods on several metrics.
arXiv Detail & Related papers (2023-08-14T13:09:41Z) - Towards Scalable Multi-View Reconstruction of Geometry and Materials [27.660389147094715]
We propose a novel method for joint recovery of camera pose, object geometry and spatially-varying Bidirectional Reflectance Distribution Function (svBRDF) of 3D scenes.
The input are high-resolution RGBD images captured by a mobile, hand-held capture system with point lights for active illumination.
arXiv Detail & Related papers (2023-06-06T15:07:39Z) - RelPose++: Recovering 6D Poses from Sparse-view Observations [66.6922660401558]
We address the task of estimating 6D camera poses from sparse-view image sets (2-8 images)
We build on the recent RelPose framework which learns a network that infers distributions over relative rotations over image pairs.
Our final system results in large improvements in 6D pose prediction over prior art on both seen and unseen object categories.
arXiv Detail & Related papers (2023-05-08T17:59:58Z) - RelPose: Predicting Probabilistic Relative Rotation for Single Objects
in the Wild [73.1276968007689]
We describe a data-driven method for inferring the camera viewpoints given multiple images of an arbitrary object.
We show that our approach outperforms state-of-the-art SfM and SLAM methods given sparse images on both seen and unseen categories.
arXiv Detail & Related papers (2022-08-11T17:59:59Z) - Efficient View Clustering and Selection for City-Scale 3D Reconstruction [1.1011268090482573]
A novel approach for scaling Multi-View Stereo (MVS) algorithms up to arbitrarily large collections of images is proposed.
The presented method exploits an approximately uniform distribution of poses and geometry and builds a set of overlapping clusters.
Since clustering is independent from pairwise visibility information, the proposed algorithm runs faster than existing literature and allows for a massive parallelization.
arXiv Detail & Related papers (2022-07-18T08:33:52Z) - Learning Canonical 3D Object Representation for Fine-Grained Recognition [77.33501114409036]
We propose a novel framework for fine-grained object recognition that learns to recover object variation in 3D space from a single image.
We represent an object as a composition of 3D shape and its appearance, while eliminating the effect of camera viewpoint.
By incorporating 3D shape and appearance jointly in a deep representation, our method learns the discriminative representation of the object.
arXiv Detail & Related papers (2021-08-10T12:19:34Z) - Shelf-Supervised Mesh Prediction in the Wild [54.01373263260449]
We propose a learning-based approach to infer 3D shape and pose of object from a single image.
We first infer a volumetric representation in a canonical frame, along with the camera pose.
The coarse volumetric prediction is then converted to a mesh-based representation, which is further refined in the predicted camera frame.
arXiv Detail & Related papers (2021-02-11T18:57:10Z) - Canonical 3D Deformer Maps: Unifying parametric and non-parametric
methods for dense weakly-supervised category reconstruction [79.98689027127855]
We propose a new representation of the 3D shape of common object categories that can be learned from a collection of 2D images of independent objects.
Our method builds in a novel way on concepts from parametric deformation models, non-parametric 3D reconstruction, and canonical embeddings.
It achieves state-of-the-art results in dense 3D reconstruction on public in-the-wild datasets of faces, cars, and birds.
arXiv Detail & Related papers (2020-08-28T15:44:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.