Efficient View Clustering and Selection for City-Scale 3D Reconstruction
- URL: http://arxiv.org/abs/2207.08434v1
- Date: Mon, 18 Jul 2022 08:33:52 GMT
- Title: Efficient View Clustering and Selection for City-Scale 3D Reconstruction
- Authors: Marco Orsingher, Paolo Zani, Paolo Medici, Massimo Bertozzi
- Abstract summary: A novel approach for scaling Multi-View Stereo (MVS) algorithms up to arbitrarily large collections of images is proposed.
The presented method exploits an approximately uniform distribution of poses and geometry and builds a set of overlapping clusters.
Since clustering is independent from pairwise visibility information, the proposed algorithm runs faster than existing literature and allows for a massive parallelization.
- Score: 1.1011268090482573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image datasets have been steadily growing in size, harming the feasibility
and efficiency of large-scale 3D reconstruction methods. In this paper, a novel
approach for scaling Multi-View Stereo (MVS) algorithms up to arbitrarily large
collections of images is proposed. Specifically, the problem of reconstructing
the 3D model of an entire city is targeted, starting from a set of videos
acquired by a moving vehicle equipped with several high-resolution cameras.
Initially, the presented method exploits an approximately uniform distribution
of poses and geometry and builds a set of overlapping clusters. Then, an
Integer Linear Programming (ILP) problem is formulated for each cluster to
select an optimal subset of views that guarantees both visibility and
matchability. Finally, local point clouds for each cluster are separately
computed and merged. Since clustering is independent from pairwise visibility
information, the proposed algorithm runs faster than existing literature and
allows for a massive parallelization. Extensive testing on urban data are
discussed to show the effectiveness and the scalability of this approach.
Related papers
- Fast and Scalable Semi-Supervised Learning for Multi-View Subspace Clustering [13.638434337947302]
FSSMSC is a novel solution to the high computational complexity commonly found in existing approaches.
The method generates a consensus anchor graph across all views, representing each data point as a sparse linear combination of chosen landmarks.
The effectiveness and efficiency of FSSMSC are validated through extensive experiments on multiple benchmark datasets of varying scales.
arXiv Detail & Related papers (2024-08-11T06:54:00Z) - Let-It-Flow: Simultaneous Optimization of 3D Flow and Object Clustering [2.763111962660262]
We study the problem of self-supervised 3D scene flow estimation from real large-scale raw point cloud sequences.
We propose a novel clustering approach that allows for combination of overlapping soft clusters as well as non-overlapping rigid clusters.
Our method especially excels in resolving flow in complicated dynamic scenes with multiple independently moving objects close to each other.
arXiv Detail & Related papers (2024-04-12T10:04:03Z) - Multi-view Aggregation Network for Dichotomous Image Segmentation [76.75904424539543]
Dichotomous Image (DIS) has recently emerged towards high-precision object segmentation from high-resolution natural images.
Existing methods rely on tedious multiple encoder-decoder streams and stages to gradually complete the global localization and local refinement.
Inspired by it, we model DIS as a multi-view object perception problem and provide a parsimonious multi-view aggregation network (MVANet)
Experiments on the popular DIS-5K dataset show that our MVANet significantly outperforms state-of-the-art methods in both accuracy and speed.
arXiv Detail & Related papers (2024-04-11T03:00:00Z) - Multiway Point Cloud Mosaicking with Diffusion and Global Optimization [74.3802812773891]
We introduce a novel framework for multiway point cloud mosaicking (named Wednesday)
At the core of our approach is ODIN, a learned pairwise registration algorithm that identifies overlaps and refines attention scores.
Tested on four diverse, large-scale datasets, our method state-of-the-art pairwise and rotation registration results by a large margin on all benchmarks.
arXiv Detail & Related papers (2024-03-30T17:29:13Z) - One for all: A novel Dual-space Co-training baseline for Large-scale
Multi-View Clustering [42.92751228313385]
We propose a novel multi-view clustering model, named Dual-space Co-training Large-scale Multi-view Clustering (DSCMC)
The main objective of our approach is to enhance the clustering performance by leveraging co-training in two distinct spaces.
Our algorithm has an approximate linear computational complexity, which guarantees its successful application on large-scale datasets.
arXiv Detail & Related papers (2024-01-28T16:30:13Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
We propose an Adaptively-weighted Integral Space for Fast Multiview Clustering (AIMC) with nearly linear complexity.
Specifically, view generation models are designed to reconstruct the view observations from the latent integral space.
Experiments conducted on several realworld datasets confirm the superiority of the proposed AIMC method.
arXiv Detail & Related papers (2022-08-25T05:47:39Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
Multi-view clustering (MVC) optimally integrates complementary information from different views to improve clustering performance.
Most of existing approaches directly fuse multiple pre-specified similarities to learn an optimal similarity matrix for clustering.
We propose late fusion MVC via alignment to address these issues.
arXiv Detail & Related papers (2022-08-02T01:49:31Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z) - Object-Centric Multi-View Aggregation [86.94544275235454]
We present an approach for aggregating a sparse set of views of an object in order to compute a semi-implicit 3D representation in the form of a volumetric feature grid.
Key to our approach is an object-centric canonical 3D coordinate system into which views can be lifted, without explicit camera pose estimation.
We show that computing a symmetry-aware mapping from pixels to the canonical coordinate system allows us to better propagate information to unseen regions.
arXiv Detail & Related papers (2020-07-20T17:38:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.