論文の概要: Enhancement of damaged-image prediction through Cahn-Hilliard Image
Inpainting
- arxiv url: http://arxiv.org/abs/2007.10753v2
- Date: Mon, 15 Mar 2021 17:26:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-08 05:50:51.502306
- Title: Enhancement of damaged-image prediction through Cahn-Hilliard Image
Inpainting
- Title(参考訳): cahn-hilliard画像インパインティングによる損傷画像予測の促進
- Authors: Jos\'e A. Carrillo, Serafim Kalliadasis, Fuyue Liang and Sergio P.
Perez
- Abstract要約: 我々は、MNISTのトレーニングセットを用いて、高密度層に基づくニューラルネットワークをトレーニングする。
次に、異なるタイプの損傷と強度でテストセットを汚染します。
ニューラルネットワークの予測精度を、損傷画像テストにケーン・ヒリアードフィルタを適用することなく比較する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We assess the benefit of including an image inpainting filter before passing
damaged images into a classification neural network. For this we employ a
modified Cahn-Hilliard equation as an image inpainting filter, which is solved
via a finite volume scheme with reduced computational cost and adequate
properties for energy stability and boundedness. The benchmark dataset employed
here is MNIST, which consists of binary images of handwritten digits and is a
standard dataset to validate image-processing methodologies. We train a neural
network based of dense layers with the training set of MNIST, and subsequently
we contaminate the test set with damage of different types and intensities. We
then compare the prediction accuracy of the neural network with and without
applying the Cahn-Hilliard filter to the damaged images test. Our results
quantify the significant improvement of damaged-image prediction due to
applying the Cahn-Hilliard filter, which for specific damages can increase up
to 50% and is in general advantageous for low to moderate damage.
- Abstract(参考訳): 我々は、損傷した画像を分類ニューラルネットワークに渡す前に、画像塗布フィルタを組み込むことの利点を評価する。
これに対し,cahn-hilliard方程式を画像処理フィルタとして適用し,計算コストを低減し,エネルギー安定性と有界性に十分な特性を有する有限体積スキームを用いて解く。
ここで使用されるベンチマークデータセットはmnistで、手書き桁のバイナリイメージで構成され、画像処理方法論を検証する標準データセットである。
我々は、MNISTのトレーニングセットで高密度層に基づくニューラルネットワークをトレーニングし、その後、異なるタイプの損傷と強度でテストセットを汚染する。
次に,損傷画像にcahn-hilliardフィルタを適用することなく,ニューラルネットワークの予測精度を比較する。
以上の結果から,カーン・ヒリアードフィルタの適用による損傷画像予測の精度向上を定量的に評価した。
関連論文リスト
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
本稿では、畳み込みニューラルネットワークを用いて偏光SAR画像のスペックルを除去するための完全なフレームワークを提案する。
実験により,提案手法はスペックル低減と分解能保存の両方において例外的な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-08-28T10:07:17Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
本研究は、最適な視覚的忠実度のために設計された強化されたニューラル圧縮手法を提案する。
我々は,洗練されたセマンティック・アンサンブル・ロス,シャルボニエ・ロス,知覚的損失,スタイル・ロス,非バイナリ・ディバイザ・ロスを組み込んだモデルを構築した。
実験により,本手法は神経画像圧縮の統計的忠実度を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-01-25T08:11:27Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - Benchmarking the Robustness of Deep Neural Networks to Common
Corruptions in Digital Pathology [11.398235052118608]
このベンチマークは、腐敗した病理画像に対して、ディープニューラルネットワークがどのように機能するかを評価するために確立されている。
2つの分類と1つのランキングのメトリクスは、汚職下での予測と信頼性のパフォーマンスを評価するために設計されている。
論文 参考訳(メタデータ) (2022-06-30T01:53:46Z) - Non-Reference Quality Monitoring of Digital Images using Gradient
Statistics and Feedforward Neural Networks [0.1657441317977376]
デジタル画像の品質を評価するために,非参照品質指標を提案する。
提案手法は,提案手法よりも高速で,画像系列の品質評価に利用することができる。
論文 参考訳(メタデータ) (2021-12-27T20:21:55Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z) - Examining and Mitigating Kernel Saturation in Convolutional Neural
Networks using Negative Images [0.8594140167290097]
CNNにおける畳み込みカーネル飽和の影響を解析する。
トレーニングデータセットに負の画像を追加することで、飽和を緩和し、分類精度を高めるための単純なデータ増強技術を提案する。
以上の結果から,CNNは畳み込みカーネル飽和の影響を受けやすく,トレーニングデータセットに負のイメージを補うことで,分類精度が統計的に顕著に向上する可能性が示唆された。
論文 参考訳(メタデータ) (2021-05-10T06:06:49Z) - Learning degraded image classification with restoration data fidelity [0.0]
広く使用されている4つの分類ネットワークにおける分解型およびレベルの影響について検討する。
本稿では,事前学習したネットワークで得られた画像特徴を忠実度マップを用いて校正する手法を提案する。
その結果,提案手法は画像劣化による影響を緩和する有望な解であることがわかった。
論文 参考訳(メタデータ) (2021-01-23T23:47:03Z) - Image Inpainting with Learnable Feature Imputation [8.293345261434943]
正規畳み込み層は、未知の領域にフィルターを適用するのと同じ方法で、塗装された画像の視覚的アーティファクトを引き起こす。
本稿では,欠落した入力値の畳み込みに対する(階層的な)特徴計算を提案する。
我々はCelebA-HQとPlaces2を比較し,そのモデルを検証する。
論文 参考訳(メタデータ) (2020-11-02T16:05:32Z) - Salvage Reusable Samples from Noisy Data for Robust Learning [70.48919625304]
本稿では,Web画像を用いた深部FGモデルのトレーニングにおいて,ラベルノイズに対処するための再利用可能なサンプル選択と修正手法を提案する。
私たちのキーとなるアイデアは、再利用可能なサンプルの追加と修正を行い、それらをクリーンな例とともに活用してネットワークを更新することです。
論文 参考訳(メタデータ) (2020-08-06T02:07:21Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。