Interactive Inference under Information Constraints
- URL: http://arxiv.org/abs/2007.10976v5
- Date: Sat, 23 Oct 2021 09:12:58 GMT
- Title: Interactive Inference under Information Constraints
- Authors: Jayadev Acharya, Cl\'ement L. Canonne, Yuhan Liu, Ziteng Sun, and
Himanshu Tyagi
- Abstract summary: We study the role of interactivity in distributed statistical inference under information constraints.
We focus on the tasks of goodness-of-fit testing and estimation of discrete distributions.
- Score: 45.72264074254599
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the role of interactivity in distributed statistical inference under
information constraints, e.g., communication constraints and local differential
privacy. We focus on the tasks of goodness-of-fit testing and estimation of
discrete distributions. From prior work, these tasks are well understood under
noninteractive protocols. Extending these approaches directly for interactive
protocols is difficult due to correlations that can build due to interactivity;
in fact, gaps can be found in prior claims of tight bounds of distribution
estimation using interactive protocols.
We propose a new approach to handle this correlation and establish a unified
method to establish lower bounds for both tasks. As an application, we obtain
optimal bounds for both estimation and testing under local differential privacy
and communication constraints. We also provide an example of a natural testing
problem where interactivity helps.
Related papers
- Conformal Counterfactual Inference under Hidden Confounding [19.190396053530417]
Predicting potential outcomes along with its uncertainty in a counterfactual world poses the foundamental challenge in causal inference.
Existing methods that construct confidence intervals for counterfactuals either rely on the assumption of strong ignorability.
We propose a novel approach based on transductive weighted conformal prediction, which provides confidence intervals for counterfactual outcomes with marginal converage guarantees.
arXiv Detail & Related papers (2024-05-20T21:43:43Z) - Integrating Active Learning in Causal Inference with Interference: A
Novel Approach in Online Experiments [5.488412825534217]
We introduce an active learning approach: Active Learning in Causal Inference with Interference (ACI)
ACI uses Gaussian process to flexibly model the direct and spillover treatment effects as a function of a continuous measure of neighbors' treatment assignment.
We demonstrate its feasibility in achieving accurate effects estimations with reduced data requirements.
arXiv Detail & Related papers (2024-02-20T04:13:59Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
Large Language Models (LLMs) have demonstrated their ability to replicate human behaviors across a wide range of scenarios.
However, their capability in handling complex, multi-character social interactions has yet to be fully explored.
We introduce the Multi-Agent Interaction Evaluation Framework (AntEval), encompassing a novel interaction framework and evaluation methods.
arXiv Detail & Related papers (2024-01-12T11:18:00Z) - Interactive Graph Convolutional Filtering [79.34979767405979]
Interactive Recommender Systems (IRS) have been increasingly used in various domains, including personalized article recommendation, social media, and online advertising.
These problems are exacerbated by the cold start problem and data sparsity problem.
Existing Multi-Armed Bandit methods, despite their carefully designed exploration strategies, often struggle to provide satisfactory results in the early stages.
Our proposed method extends interactive collaborative filtering into the graph model to enhance the performance of collaborative filtering between users and items.
arXiv Detail & Related papers (2023-09-04T09:02:31Z) - Killing Two Birds with One Stone: Quantization Achieves Privacy in
Distributed Learning [18.824571167583432]
Communication efficiency and privacy protection are critical issues in distributed machine learning.
We propose a comprehensive quantization-based solution that could simultaneously achieve communication efficiency and privacy protection.
We theoretically capture the new trade-offs between communication, privacy, and learning performance.
arXiv Detail & Related papers (2023-04-26T13:13:04Z) - The Role of Interactivity in Structured Estimation [44.068012503785475]
We study high-dimensional estimation under three natural constraints.
Without sparsity assumptions, interactivity cannot improve the minimax rates of estimation.
We establish that the gap increases when we have more structured sparsity.
arXiv Detail & Related papers (2022-03-14T05:54:42Z) - Towards Interaction Detection Using Topological Analysis on Neural
Networks [55.74562391439507]
In neural networks, any interacting features must follow a strongly weighted connection to common hidden units.
We propose a new measure for quantifying interaction strength, based upon the well-received theory of persistent homology.
A Persistence Interaction detection(PID) algorithm is developed to efficiently detect interactions.
arXiv Detail & Related papers (2020-10-25T02:15:24Z) - Joint Constrained Learning for Event-Event Relation Extraction [94.3499255880101]
We propose a joint constrained learning framework for modeling event-event relations.
Specifically, the framework enforces logical constraints within and across multiple temporal and subevent relations.
We show that our joint constrained learning approach effectively compensates for the lack of jointly labeled data.
arXiv Detail & Related papers (2020-10-13T22:45:28Z) - Unified lower bounds for interactive high-dimensional estimation under
information constraints [40.339506154827106]
We provide a unified framework enabling us to derive a variety of (tight) minimax lower bounds for different parametric families of distributions.
Our lower bound framework is versatile and yields "plug-and-play" bounds that are widely applicable to a large range of estimation problems.
arXiv Detail & Related papers (2020-10-13T17:25:19Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
We show that effective estimation can still be achieved in important applications.
Our approach is based on estimating a ratio that corrects for the discrepancy between the stationary and empirical distributions.
The resulting algorithm, GenDICE, is straightforward and effective.
arXiv Detail & Related papers (2020-02-21T00:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.