Sensor-Based Continuous Hand Gesture Recognition by Long Short-Term
Memory
- URL: http://arxiv.org/abs/2007.11268v1
- Date: Wed, 22 Jul 2020 08:40:40 GMT
- Title: Sensor-Based Continuous Hand Gesture Recognition by Long Short-Term
Memory
- Authors: Tsung-Ming Tai, Yun-Jie Jhang, Zhen-Wei Liao, Kai-Chung Teng, and
Wen-Jyi Hwang
- Abstract summary: This article presents a sensor-based continuous hand gesture recognition algorithm by long short-term memory (LSTM)
A prototype system based on smartphones has been implemented for the performance evaluation.
Experimental results show that the proposed algorithm is an effective alternative for robust and accurate hand-gesture recognition.
- Score: 0.1580926907837365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article aims to present a novel sensor-based continuous hand gesture
recognition algorithm by long short-term memory (LSTM). Only the basic
accelerators and/or gyroscopes are required by the algorithm. Given a sequence
of input sensory data, a many-to-many LSTM scheme is adopted to produce an
output path. A maximum a posteriori estimation is then carried out based on the
observed path to obtain the final classification results. A prototype system
based on smartphones has been implemented for the performance evaluation.
Experimental results show that the proposed algorithm is an effective
alternative for robust and accurate hand-gesture recognition.
Related papers
- HARMamba: Efficient and Lightweight Wearable Sensor Human Activity Recognition Based on Bidirectional Mamba [7.412537185607976]
Wearable sensor-based human activity recognition (HAR) is a critical research domain in activity perception.
This study introduces HARMamba, an innovative light-weight and versatile HAR architecture that combines selective bidirectional State Spaces Model and hardware-aware design.
HarMamba outperforms contemporary state-of-the-art frameworks, delivering comparable or better accuracy with significantly reducing computational and memory demands.
arXiv Detail & Related papers (2024-03-29T13:57:46Z) - Agile gesture recognition for capacitive sensing devices: adapting
on-the-job [55.40855017016652]
We demonstrate a hand gesture recognition system that uses signals from capacitive sensors embedded into the etee hand controller.
The controller generates real-time signals from each of the wearer five fingers.
We use a machine learning technique to analyse the time series signals and identify three features that can represent 5 fingers within 500 ms.
arXiv Detail & Related papers (2023-05-12T17:24:02Z) - Read Pointer Meters in complex environments based on a Human-like
Alignment and Recognition Algorithm [16.823681016882315]
We propose a human-like alignment and recognition algorithm to overcome these problems.
A Spatial Transformed Module(STM) is proposed to obtain the front view of images in a self-autonomous way.
A Value Acquisition Module(VAM) is proposed to infer accurate meter values by an end-to-end trained framework.
arXiv Detail & Related papers (2023-02-28T05:37:04Z) - Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware [50.380319968947035]
Recent deep learning approaches have reached accuracy in such tasks, but their implementation on conventional embedded solutions is still computationally very and energy expensive.
We propose a new benchmark for computing tactile pattern recognition at the edge through letters reading.
We trained and compared feed-forward and recurrent spiking neural networks (SNNs) offline using back-propagation through time with surrogate gradients, then we deployed them on the Intel Loihimorphic chip for efficient inference.
Our results show that the LSTM outperforms the recurrent SNN in terms of accuracy by 14%. However, the recurrent SNN on Loihi is 237 times more energy
arXiv Detail & Related papers (2022-05-30T14:30:45Z) - UMSNet: An Universal Multi-sensor Network for Human Activity Recognition [10.952666953066542]
This paper proposes a universal multi-sensor network (UMSNet) for human activity recognition.
In particular, we propose a new lightweight sensor residual block (called LSR block), which improves the performance.
Our framework has a clear structure and can be directly applied to various types of multi-modal Time Series Classification tasks.
arXiv Detail & Related papers (2022-05-24T03:29:54Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
In this thesis, we focus on the design of an automatic algorithms that provide personalized ranking by adapting to the current conditions.
For the former, we propose novel algorithm called SAROS that take into account both kinds of feedback for learning over the sequence of interactions.
The proposed idea of taking into account the neighbour lines shows statistically significant results in comparison with the initial approach for faults detection in power grid.
arXiv Detail & Related papers (2022-05-13T21:09:41Z) - A Spike Learning System for Event-driven Object Recognition [8.875351982997554]
Event-driven sensors such as LiDAR and dynamic vision sensor (DVS) have found increased attention in high-resolution and high-speed applications.
We present a spiking learning system that uses the spiking neural network (SNN) with a novel temporal coding for accurate and fast object recognition.
arXiv Detail & Related papers (2021-01-21T20:57:53Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z) - Denoising IMU Gyroscopes with Deep Learning for Open-Loop Attitude
Estimation [0.0]
This paper proposes a learning method for denoising gyroscopes of Inertial Measurement Units (IMUs) using ground truth data.
The obtained algorithm outperforms the state-of-the-art on the (unseen) test sequences.
arXiv Detail & Related papers (2020-02-25T08:04:31Z) - Temporal Pulses Driven Spiking Neural Network for Fast Object
Recognition in Autonomous Driving [65.36115045035903]
We propose an approach to address the object recognition problem directly with raw temporal pulses utilizing the spiking neural network (SNN)
Being evaluated on various datasets, our proposed method has shown comparable performance as the state-of-the-art methods, while achieving remarkable time efficiency.
arXiv Detail & Related papers (2020-01-24T22:58:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.