論文の概要: Deep Models and Shortwave Infrared Information to Detect Face
Presentation Attacks
- arxiv url: http://arxiv.org/abs/2007.11469v1
- Date: Wed, 22 Jul 2020 14:41:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 22:55:10.346719
- Title: Deep Models and Shortwave Infrared Information to Detect Face
Presentation Attacks
- Title(参考訳): 顔提示攻撃検出のための深部モデルと短波赤外情報
- Authors: Guillaume Heusch and Anjith George and David Geissbuhler and Zohreh
Mostaani and Sebastien Marcel
- Abstract要約: 畳み込みニューラルネットワークに基づく最近のモデルを用いて顔提示攻撃検出を行う。
実験は、様々な種類の攻撃を含む、新しいパブリックで無償のデータベースで実施されている。
- 参考スコア(独自算出の注目度): 6.684752451476642
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the problem of face presentation attack detection using
different image modalities. In particular, the usage of short wave infrared
(SWIR) imaging is considered. Face presentation attack detection is performed
using recent models based on Convolutional Neural Networks using only carefully
selected SWIR image differences as input. Conducted experiments show superior
performance over similar models acting on either color images or on a
combination of different modalities (visible, NIR, thermal and depth), as well
as on a SVM-based classifier acting on SWIR image differences. Experiments have
been carried on a new public and freely available database, containing a wide
variety of attacks. Video sequences have been recorded thanks to several
sensors resulting in 14 different streams in the visible, NIR, SWIR and thermal
spectra, as well as depth data. The best proposed approach is able to almost
perfectly detect all impersonation attacks while ensuring low bonafide
classification errors. On the other hand, obtained results show that
obfuscation attacks are more difficult to detect. We hope that the proposed
database will foster research on this challenging problem. Finally, all the
code and instructions to reproduce presented experiments is made available to
the research community.
- Abstract(参考訳): 本稿では,異なる画像モダリティを用いた顔提示攻撃検出の問題に対処する。
特に、短波赤外画像(SWIR)の使用について考察する。
SWIR画像差分のみを入力として、畳み込みニューラルネットワークに基づく最近のモデルを用いて顔提示攻撃検出を行う。
導電性実験は、色画像または異なるモード(可視、NIR、熱、深さ)の組み合わせに作用する類似モデルや、SWIR画像の違いに作用するSVMベースの分類器よりも優れた性能を示す。
実験は、新しいパブリックで自由に利用可能なデータベース上で行われ、さまざまな攻撃を含む。
いくつかのセンサーによって、可視光、NIR、SWIR、熱スペクトルの14の異なるストリームと深度データによって、ビデオシーケンスが記録されている。
提案する最善のアプローチは、ボナフィドの分類エラーを低く抑えつつ、すべての偽装攻撃をほぼ完全に検出できる。
一方,得られた結果は,難読化攻撃の方が検出が困難であることを示している。
提案するデータベースは,この課題に対する研究の促進を期待する。
最後に、提示された実験を再現するためのコードと指示はすべて、研究コミュニティで利用可能である。
関連論文リスト
- Effective and Efficient Adversarial Detection for Vision-Language Models via A Single Vector [97.92369017531038]
Diverse hArmful Responses (RADAR) を用いた新しい laRge-scale Adervsarial 画像データセットを構築した。
そこで我々は,視覚言語モデル (VLM) の隠れ状態から抽出した1つのベクトルを利用して,入力中の良質な画像に対して対向画像を検出する,新しいiN時間埋め込み型AdveRSarial Image Detectction (NEARSIDE) 法を開発した。
論文 参考訳(メタデータ) (2024-10-30T10:33:10Z) - SHIELD : An Evaluation Benchmark for Face Spoofing and Forgery Detection
with Multimodal Large Language Models [63.946809247201905]
フェーススプーフィングと偽造検出におけるMLLMの能力を評価するための新しいベンチマーク、ShielDを導入する。
我々は、これらの2つの顔セキュリティタスクにおいて、マルチモーダル顔データを評価するために、真/偽/複数選択の質問を設計する。
その結果,MLLMは顔セキュリティ領域において大きな可能性を秘めていることがわかった。
論文 参考訳(メタデータ) (2024-02-06T17:31:36Z) - Cross-Modality Perturbation Synergy Attack for Person Re-identification [66.48494594909123]
相互モダリティReIDの主な課題は、異なるモダリティ間の視覚的差異を効果的に扱うことである。
既存の攻撃方法は、目に見える画像のモダリティの特徴に主に焦点を当てている。
本研究では,クロスモーダルReIDに特化して設計されたユニバーサル摂動攻撃を提案する。
論文 参考訳(メタデータ) (2024-01-18T15:56:23Z) - Multispectral Imaging for Differential Face Morphing Attack Detection: A
Preliminary Study [7.681417534211941]
本稿では,D-MAD(D-MAD)のためのマルチスペクトルフレームワークを提案する。
提案したマルチスペクトルD-MADフレームワークは、7つの異なるスペクトルバンドを取得してモーフィング攻撃を検出するために、信頼できるキャプチャとしてキャプチャされたマルチスペクトル画像を導入する。
論文 参考訳(メタデータ) (2023-04-07T07:03:00Z) - Shuffled Patch-Wise Supervision for Presentation Attack Detection [12.031796234206135]
顔の偽造防止は、写真、ビデオ、マスク、または認証された人の顔の別の代用品を使用することによって、偽の顔認証を防止するために不可欠である。
ほとんどのプレゼンテーションアタック検出システムはオーバーフィッティングに悩まされており、1つのデータセットでほぼ完璧なスコアを得るが、より現実的なデータを持つ別のデータセットでは失敗する。
画素単位のバイナリ管理とパッチベースのCNNを組み合わせた新しいPAD手法を提案する。
論文 参考訳(メタデータ) (2021-09-08T08:14:13Z) - Robust Data Hiding Using Inverse Gradient Attention [82.73143630466629]
データ隠蔽タスクでは、異なる耐久性を有するため、カバー画像の各ピクセルを別々に扱う必要がある。
Inverse Gradient Attention (IGA) を用いた新しい深層データ隠蔽方式を提案する。
実証的な実験により、提案モデルが2つの先行するデータセット上で最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2020-11-21T19:08:23Z) - MixNet for Generalized Face Presentation Attack Detection [63.35297510471997]
我々は、プレゼンテーションアタックを検出するための、TextitMixNetと呼ばれるディープラーニングベースのネットワークを提案している。
提案アルゴリズムは最先端の畳み込みニューラルネットワークアーキテクチャを利用して,各攻撃カテゴリの特徴マッピングを学習する。
論文 参考訳(メタデータ) (2020-10-25T23:01:13Z) - Anomaly Detection-Based Unknown Face Presentation Attack Detection [74.4918294453537]
異常検出に基づくスプーフ攻撃検出は、顔提示攻撃検出の最近の進歩である。
本稿では,異常検出に基づくスプーフ攻撃検出のためのディープラーニングソリューションを提案する。
提案手法はCNNの表現学習能力の恩恵を受け,fPADタスクの優れた特徴を学習する。
論文 参考訳(メタデータ) (2020-07-11T21:20:55Z) - Multi-Modal Fingerprint Presentation Attack Detection: Evaluation On A
New Dataset [9.783887684870654]
フィンガープリントによるプレゼンテーション攻撃の検出は、ますます困難な問題になりつつある。
本研究は,最近導入された複数のセンサ・モダリティの有用性について考察する。
完全畳み込み型ディープニューラルネットワークフレームワークを用いて包括的解析を行った。
論文 参考訳(メタデータ) (2020-06-12T22:38:23Z) - 3D Face Anti-spoofing with Factorized Bilinear Coding [35.30886962572515]
本稿では, きめ細かい分類の観点から, 新規なアンチ・スプーフィング法を提案する。
RGB と YCbCr 空間から識別的かつ相補的情報を抽出することにより、3次元顔スプーフィング検出の原理的解法を開発した。
論文 参考訳(メタデータ) (2020-05-12T03:09:20Z) - Deep convolutional neural networks for face and iris presentation attack
detection: Survey and case study [0.5801044612920815]
顔PADのクロスデータセット評価は,術式よりも一般化が良好であった。
顔と虹彩の両方の攻撃を検出するために訓練された1つのディープネットワークを提案する。
論文 参考訳(メタデータ) (2020-04-25T02:06:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。