Deep Learning Based Segmentation of Various Brain Lesions for
Radiosurgery
- URL: http://arxiv.org/abs/2007.11784v1
- Date: Wed, 22 Jul 2020 09:35:04 GMT
- Title: Deep Learning Based Segmentation of Various Brain Lesions for
Radiosurgery
- Authors: Siang-Ruei Wu, Hao-Yun Chang, Florence T Su, Heng-Chun Liao, Wanju
Tseng, Chun-Chih Liao, Feipei Lai, Feng-Ming Hsu, Furen Xiao
- Abstract summary: We benchmarked state-of-the-art deep learning segmentation algorithms on our clinical stereotactic radiosurgery dataset.
In particular, we compared the model performances with respect to their sampling method, model architecture, and the choice of loss functions.
- Score: 0.8431877864777444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation of medical images with deep learning models is rapidly
developed. In this study, we benchmarked state-of-the-art deep learning
segmentation algorithms on our clinical stereotactic radiosurgery dataset,
demonstrating the strengths and weaknesses of these algorithms in a fairly
practical scenario. In particular, we compared the model performances with
respect to their sampling method, model architecture, and the choice of loss
functions, identifying the suitable settings for their applications and
shedding light on the possible improvements.
Related papers
- Semantic Segmentation Refiner for Ultrasound Applications with Zero-Shot Foundation Models [1.8142288667655782]
We propose a prompt-less segmentation method harnessing the ability of segmentation foundation models to segment abstract shapes.
Our method's advantages are brought to light in experiments on a small-scale musculoskeletal ultrasound images dataset.
arXiv Detail & Related papers (2024-04-25T04:21:57Z) - Synthetic Data for Robust Stroke Segmentation [0.0]
Deep learning-based semantic segmentation in neuroimaging currently requires high-resolution scans and extensive annotated datasets.
We present a novel synthetic framework for the task of lesion segmentation, extending the capabilities of the established SynthSeg approach.
arXiv Detail & Related papers (2024-04-02T13:42:29Z) - Data Augmentation-Based Unsupervised Domain Adaptation In Medical
Imaging [0.709016563801433]
We propose an unsupervised method for robust domain adaptation in brain MRI segmentation by leveraging MRI-specific augmentation techniques.
The results show that our proposed approach achieves high accuracy, exhibits broad applicability, and showcases remarkable robustness against domain shift in various tasks.
arXiv Detail & Related papers (2023-08-08T17:00:11Z) - FAST-AID Brain: Fast and Accurate Segmentation Tool using Artificial
Intelligence Developed for Brain [0.8376091455761259]
A novel deep learning method is proposed for fast and accurate segmentation of the human brain into 132 regions.
The proposed model uses an efficient U-Net-like network and benefits from the intersection points of different views and hierarchical relations.
The proposed method can be applied to brain MRI data including skull or any other artifacts without preprocessing the images or a drop in performance.
arXiv Detail & Related papers (2022-08-30T16:06:07Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
Decision making algorithms are used in a multitude of different applications.
Deep learning approaches that use highly parametric architectures tuned from data without relying on mathematical models are becoming increasingly popular.
Model-based optimization and data-centric deep learning are often considered to be distinct disciplines.
arXiv Detail & Related papers (2022-05-05T13:40:08Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Deep Unrolled Recovery in Sparse Biological Imaging [62.997667081978825]
Deep algorithm unrolling is a model-based approach to develop deep architectures that combine the interpretability of iterative algorithms with the performance gains of supervised deep learning.
This framework is well-suited to applications in biological imaging, where physics-based models exist to describe the measurement process and the information to be recovered is often highly structured.
arXiv Detail & Related papers (2021-09-28T20:22:44Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.