論文の概要: Challenging common bolus advisor for self-monitoring type-I diabetes
patients using Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2007.11880v1
- Date: Thu, 23 Jul 2020 09:38:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 11:54:14.758204
- Title: Challenging common bolus advisor for self-monitoring type-I diabetes
patients using Reinforcement Learning
- Title(参考訳): Reinforcement Learning を用いた自己モニタリング型I型糖尿病患者の健康診断
- Authors: Fr\'ed\'eric Log\'e (CMAP), Erwan Le Pennec (XPOP, CMAP), Habiboulaye
Amadou-Boubacar
- Abstract要約: 自己モニタリングを行う糖尿病患者は、食事の直前にインスリンの摂取量を決定する必要がある。
FDAが承認したシミュレータであるT1DMでシミュレーションしたデータに強化学習技術を適用することに挑戦した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Patients with diabetes who are self-monitoring have to decide right before
each meal how much insulin they should take. A standard bolus advisor exists,
but has never actually been proven to be optimal in any sense. We challenged
this rule applying Reinforcement Learning techniques on data simulated with
T1DM, an FDA-approved simulator developed by Kovatchev et al. modeling the
gluco-insulin interaction. Results show that the optimal bolus rule is fairly
different from the standard bolus advisor, and if followed can actually avoid
hypoglycemia episodes.
- Abstract(参考訳): 自己モニタリングを行う糖尿病患者は、食事の直前にインスリンの摂取量を決定する必要がある。
標準 bolus advisor が存在するが、いかなる意味でも最適であることが証明されていない。
我々は,コバチェフらが開発したFDA認可シミュレータT1DMでシミュレーションしたデータに強化学習技術を適用し,糖-インスリン相互作用をモデル化した。
その結果, 至適のボルス則は標準のボルス・アドバイザとはかなり異なり, 続くと低血糖のエピソードを回避できることがわかった。
関連論文リスト
- From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
GluFormerは、トランスフォーマーアーキテクチャに基づく生体医学的時間的データの生成基盤モデルである。
GluFormerは5つの地理的領域にまたがる4936人を含む15の異なる外部データセットに一般化されている。
今後4年間の健康状態も予測できる。
論文 参考訳(メタデータ) (2024-08-20T13:19:06Z) - CLIP-DR: Textual Knowledge-Guided Diabetic Retinopathy Grading with Ranking-aware Prompting [48.47935559597376]
糖尿病網膜症(英: Diabetic retinopathy, DR)は、糖尿病の合併症の一つで、視力低下のレベルに達するのに何十年もかかる。
現在のDRグレーディング手法のほとんどは、データのばらつきに不十分な堅牢性に悩まされている。
3つの観測結果に基づく新しいDRグレーティングフレームワークCLIP-DRを提案する。
論文 参考訳(メタデータ) (2024-07-04T17:14:18Z) - Supervised Learning Models for Early Detection of Albuminuria Risk in
Type-2 Diabetes Mellitus Patients [0.0]
本研究の目的は,T2DM患者にアルブミン尿を発症するリスクを予測するための教師付き学習モデルを開発することである。
特徴として10の属性、目標として1の属性(アルブミン尿症)から構成される。
これはそれぞれ0.74と0.75の精度とf1スコアの値を達成し、T2DMの尿失調を予測するためのスクリーニングに適していた。
論文 参考訳(メタデータ) (2023-09-28T08:41:12Z) - Using Reinforcement Learning to Simplify Mealtime Insulin Dosing for
People with Type 1 Diabetes: In-Silico Experiments [0.40792653193642503]
1型糖尿病(T1D)の患者は、食事時に最適なインスリン摂取量を計算するのに苦労する。
定性食事(QM)戦略に対応する最適な食事関連インスリン投与を推奨するRLエージェントを提案する。
論文 参考訳(メタデータ) (2023-09-17T01:34:02Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
この戦略をデータから学ぶためには、標準的なディープラーニングベースのモデルに対して、大規模なトレーニングデータセットが必要である。
そこで本研究では, 異なる患者から血管木セグメントを組換えることで, 人工的なトレーニングサンプルを生成する方法を提案する。
拡張スキームに則って,タスク固有の入力を入力した3D-DenseNetを用いて,半球間の比較を行う。
論文 参考訳(メタデータ) (2022-05-05T10:31:57Z) - Task-wise Split Gradient Boosting Trees for Multi-center Diabetes
Prediction [37.846368153741395]
マルチセンター糖尿病予測タスクにTSGB(Task-wise Split Gradient Boosting Trees)を提案する。
TSGBはいくつかの最先端手法に対して優れた性能を発揮する。
TSGB法は早期診断のためのオンライン糖尿病リスク評価ソフトウェアとして展開されている。
論文 参考訳(メタデータ) (2021-08-16T14:22:44Z) - Using Machine Learning Techniques to Identify Key Risk Factors for
Diabetes and Undiagnosed Diabetes [0.0]
本稿では,糖尿病の有無と未診断糖尿病の有無を予測するために構築された機械学習モデルについて概説する。
次に、最高のパフォーマンスモデルの最も関連性の高い変数を比較します。
血液浸透圧、家族歴、様々な化合物の有病率、高血圧は全ての糖尿病リスクの指標である。
論文 参考訳(メタデータ) (2021-05-19T20:02:35Z) - LSTMs and Deep Residual Networks for Carbohydrate and Bolus
Recommendations in Type 1 Diabetes Management [4.01573226844961]
本研究では, LSTMを用いた血糖値予測手法について紹介する。
次に、同じ推奨タスクのための新しいアーキテクチャを導き出します。
OhioT1DMデータセットの実際の患者データを用いた実験的評価は、新しい統合アーキテクチャが以前のLSTMベースのアプローチと良好に比較できることを示している。
論文 参考訳(メタデータ) (2021-03-06T19:06:14Z) - Basal Glucose Control in Type 1 Diabetes using Deep Reinforcement
Learning: An In Silico Validation [16.93692520921499]
単一ホルモン(インスリン)と二重ホルモン(インスリンとグルカゴン)のデリバリーのための新しい深層強化学習モデルを提案する。
成体コホートでは、目標範囲のパーセンテージは77.6%から80.9%に改善した。
青年コホートでは、目標範囲のパーセンテージが55.5%から65.9%に改善され、単一ホルモンが制御された。
論文 参考訳(メタデータ) (2020-05-18T20:13:16Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。