論文の概要: Basal Glucose Control in Type 1 Diabetes using Deep Reinforcement
Learning: An In Silico Validation
- arxiv url: http://arxiv.org/abs/2005.09059v1
- Date: Mon, 18 May 2020 20:13:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 00:50:37.113773
- Title: Basal Glucose Control in Type 1 Diabetes using Deep Reinforcement
Learning: An In Silico Validation
- Title(参考訳): 深部強化学習を用いた1型糖尿病の基底グルコースコントロール: insilico Validation
- Authors: Taiyu Zhu, Kezhi Li, Pau Herrero, Pantelis Georgiou
- Abstract要約: 単一ホルモン(インスリン)と二重ホルモン(インスリンとグルカゴン)のデリバリーのための新しい深層強化学習モデルを提案する。
成体コホートでは、目標範囲のパーセンテージは77.6%から80.9%に改善した。
青年コホートでは、目標範囲のパーセンテージが55.5%から65.9%に改善され、単一ホルモンが制御された。
- 参考スコア(独自算出の注目度): 16.93692520921499
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: People with Type 1 diabetes (T1D) require regular exogenous infusion of
insulin to maintain their blood glucose concentration in a therapeutically
adequate target range. Although the artificial pancreas and continuous glucose
monitoring have been proven to be effective in achieving closed-loop control,
significant challenges still remain due to the high complexity of glucose
dynamics and limitations in the technology. In this work, we propose a novel
deep reinforcement learning model for single-hormone (insulin) and dual-hormone
(insulin and glucagon) delivery. In particular, the delivery strategies are
developed by double Q-learning with dilated recurrent neural networks. For
designing and testing purposes, the FDA-accepted UVA/Padova Type 1 simulator
was employed. First, we performed long-term generalized training to obtain a
population model. Then, this model was personalized with a small data-set of
subject-specific data. In silico results show that the single and dual-hormone
delivery strategies achieve good glucose control when compared to a standard
basal-bolus therapy with low-glucose insulin suspension. Specifically, in the
adult cohort (n=10), percentage time in target range [70, 180] mg/dL improved
from 77.6% to 80.9% with single-hormone control, and to $85.6\%$ with
dual-hormone control. In the adolescent cohort (n=10), percentage time in
target range improved from 55.5% to 65.9% with single-hormone control, and to
78.8% with dual-hormone control. In all scenarios, a significant decrease in
hypoglycemia was observed. These results show that the use of deep
reinforcement learning is a viable approach for closed-loop glucose control in
T1D.
- Abstract(参考訳): 1型糖尿病(t1d)の患者は、治療的に適切な目標範囲で血糖値を維持するために、インスリンの定期的な外因性注入を必要とする。
人工膵臓と連続グルコースモニタリングはクローズドループ制御の達成に有効であることが証明されているが、グルコースダイナミクスの複雑さと技術上の限界により、依然として大きな課題が残っている。
本研究では,シングルホルモン(インシュリン)とデュアルホルモン(インシュリンとグルカゴン)デリバリーのための新しい深層強化学習モデルを提案する。
特に、拡張されたリカレントニューラルネットワークを用いたダブルq学習によって、デリバリ戦略が開発されている。
設計と試験のために、FDAが承認したUVA/Padova Type 1シミュレータが採用された。
まず,集団モデルを得るための長期総合訓練を行った。
そして、このモデルは、主題固有の小さなデータセットでパーソナライズされた。
シリコでは、低血糖のインスリンサスペンションを用いた標準的な基底代謝療法と比較して、シングルホルモンとデュアルホルモンのデリバリー戦略が良好なグルコース制御を達成していることが示された。
具体的には、成体コホート(n=10)では、ターゲット範囲[70, 180] mg/dLが77.6%から80.9%に改善され、二重ホルモンコントロールでは85.6\%%となった。
思春期コホート (n=10) では, ターゲット範囲のパーセンテージタイムは55.5%から65.9%に改善し, 二重ホルモンコントロールでは78.8%に改善した。
いずれの場合も低血糖の有意な低下が観察された。
これらの結果から, 深部強化学習はT1Dの閉ループグルコース制御に有効であることが示された。
関連論文リスト
- From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
GluFormerは、トランスフォーマーアーキテクチャに基づく生体医学的時間的データの生成基盤モデルである。
GluFormerは5つの地理的領域にまたがる4936人を含む15の異なる外部データセットに一般化されている。
今後4年間の健康状態も予測できる。
論文 参考訳(メタデータ) (2024-08-20T13:19:06Z) - Attention Networks for Personalized Mealtime Insulin Dosing in People with Type 1 Diabetes [0.30723404270319693]
本稿では,自己注意型エンコーダネットワークを用いた強化学習エージェントが,この直感的な処理を効果的に模倣し,強化する方法を実証する。
その結果、センサー強化ポンプのシナリオでは16.5から9.6に、自動インスリンデリバリーのシナリオでは9.1から6.7に、血糖リスクは著しく低下した。
論文 参考訳(メタデータ) (2024-06-18T17:59:32Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - Temporal patterns in insulin needs for Type 1 diabetes [0.0]
1型糖尿病 (Type 1 Diabetes, T1D) は、身体がインスリンをほとんど分泌しない慢性疾患である。
正しいインスリン摂取量と時間を見つけることは、複雑で困難であり、まだ未解決のコントロールタスクである。
本研究ではOpenAPS Data Commonsデータセットを用いて、インスリンに必要な時間的パターンをよく知られた要因によって検出する。
論文 参考訳(メタデータ) (2022-11-14T14:19:50Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
この戦略をデータから学ぶためには、標準的なディープラーニングベースのモデルに対して、大規模なトレーニングデータセットが必要である。
そこで本研究では, 異なる患者から血管木セグメントを組換えることで, 人工的なトレーニングサンプルを生成する方法を提案する。
拡張スキームに則って,タスク固有の入力を入力した3D-DenseNetを用いて,半球間の比較を行う。
論文 参考訳(メタデータ) (2022-05-05T10:31:57Z) - Offline Reinforcement Learning for Safer Blood Glucose Control in People
with Type 1 Diabetes [1.1859913430860336]
オンライン強化学習(RL)は、糖尿病デバイスにおける血糖コントロールをさらに強化する方法として利用されてきた。
本稿では,FDAが承認したUVA/パドバ血糖動態シミュレータで利用可能な30名の仮想的患者の血糖管理におけるBCQ,CQL,TD3-BCの有用性について検討する。
オフラインのRLは、61.6 +-0.3%から65.3 +/-0.5%までの健康な血糖値において、最強の最先端のベースラインに比べて有意に上昇する。
論文 参考訳(メタデータ) (2022-04-07T11:52:12Z) - Deep Reinforcement Learning for Closed-Loop Blood Glucose Control [12.989855325491163]
自動血糖コントロールのための強化学習技術を開発した。
30人のシミュレーション患者から得られた2100万時間以上のデータに基づいて、我々のRLアプローチはベースライン制御アルゴリズムより優れています。
論文 参考訳(メタデータ) (2020-09-18T20:15:02Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z) - Machine learning for the diagnosis of early stage diabetes using
temporal glucose profiles [0.20072624123275526]
糖尿病は慢性疾患であり、早期に疾患の検出を複雑にする長い潜伏期間を有する。
本稿では,グルコース濃度の時間変化の微妙な変化を機械学習で検出することを提案する。
多層パーセプトロン、畳み込みニューラルネットワーク、および繰り返しニューラルネットワークはいずれも85%以上の精度でインスリン抵抗の程度を同定した。
論文 参考訳(メタデータ) (2020-05-18T13:31:12Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
本研究では,デジタル意思決定支援ツールの入力として連続グルコースモニタリング(Continuous Glucose Monitoring, CGM)データを利用する方法について検討する。
短時間の血液グルコース (STBG) 予測において, リカレントニューラルネットワーク (Recurrent Neural Networks, RNN) をどのように利用できるかを検討する。
論文 参考訳(メタデータ) (2020-02-06T16:39:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。