論文の概要: Deep Dynamic Factor Models
- arxiv url: http://arxiv.org/abs/2007.11887v2
- Date: Sat, 20 May 2023 14:37:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-24 06:53:05.739062
- Title: Deep Dynamic Factor Models
- Title(参考訳): 深部動的因子モデル
- Authors: Paolo Andreini, Cosimo Izzo and Giovanni Ricco
- Abstract要約: ディープ・ダイナミック・ファクター・モデル(D$2$FM)と呼ばれる新しいディープ・ニューラルネットワーク・フレームワークは、利用可能な情報をエンコードすることができる。
設計上、モデルの潜在状態は依然として標準因子モデルとして解釈できる。
- 参考スコア(独自算出の注目度): 0.5156484100374059
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A novel deep neural network framework -- that we refer to as Deep Dynamic
Factor Model (D$^2$FM) --, is able to encode the information available, from
hundreds of macroeconomic and financial time-series into a handful of
unobserved latent states. While similar in spirit to traditional dynamic factor
models (DFMs), differently from those, this new class of models allows for
nonlinearities between factors and observables due to the autoencoder neural
network structure. However, by design, the latent states of the model can still
be interpreted as in a standard factor model. Both in a fully real-time
out-of-sample nowcasting and forecasting exercise with US data and in a Monte
Carlo experiment, the D$^2$FM improves over the performances of a
state-of-the-art DFM.
- Abstract(参考訳): ディープ・ダイナミック・ファクター・モデル(d$^2$fm)と呼ばれる新しいディープ・ニューラル・ネットワーク・フレームワークは、数百のマクロ経済や金融の時系列からわずかな観測できない潜在状態まで、利用可能な情報をエンコードすることができる。
従来のダイナミックファクタモデル(dfms)と同じような考え方だが、この新しいタイプのモデルでは、オートエンコーダニューラルネットワーク構造によるファクタとオブザーバ間の非線形性が実現されている。
しかし、設計上、モデルの潜在状態は依然として標準因子モデルとして解釈できる。
完全リアルタイムのアウト・オブ・サンプレット放送と米国のデータによる予測演習、モンテカルロの実験の両方において、D$^2$FMは最先端のDFMの性能よりも改善されている。
関連論文リスト
- Deep Learning for Koopman Operator Estimation in Idealized Atmospheric Dynamics [2.2489531925874013]
ディープラーニングは、気象予報に革命をもたらしており、新しいデータ駆動モデルは、中期予測のための運用物理モデルと同等の精度を達成している。
これらのモデルは解釈可能性に欠けることが多く、基礎となる力学を理解するのが難しく、説明が難しい。
本稿では、データ駆動モデルの透明性を高めるために、複雑な非線形力学の線形表現を提供するクープマン作用素を推定する手法を提案する。
論文 参考訳(メタデータ) (2024-09-10T13:56:54Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Deep Latent Force Models: ODE-based Process Convolutions for Bayesian
Deep Learning [0.0]
深潜力モデル (DLFM) は、各層に物理インフォームドカーネルを持つ深いガウス過程である。
我々はDLFMの非線形実世界の時系列データに現れるダイナミクスを捉える能力の実証的証拠を提示する。
DLFMは,非物理インフォームド確率モデルに匹敵する性能を達成できることがわかった。
論文 参考訳(メタデータ) (2023-11-24T19:55:57Z) - Learning Differential Operators for Interpretable Time Series Modeling [34.32259687441212]
逐次データから解釈可能なPDEモデルを自動的に取得できる学習フレームワークを提案する。
我々のモデルは、貴重な解釈可能性を提供し、最先端モデルに匹敵する性能を達成することができる。
論文 参考訳(メタデータ) (2022-09-03T20:14:31Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) モデルを提案する。
我々のモデルは、フレキシブルニューラルネットワークを用いて各タイムスタンプの平均と分散をパラメータ化する。
合成データセットと公開実世界のベンチマークの両方において,本モデルの有効性を示す。
論文 参考訳(メタデータ) (2021-02-02T06:15:15Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
我々は、無限確率的地平線を持つ環境力学の予測モデルである$gamma$-modelを導入する。
トレーニングタイムとテストタイムの複合的なエラーの間には、そのトレーニングが避けられないトレードオフを反映しているかについて議論する。
論文 参考訳(メタデータ) (2020-10-27T17:54:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。