論文の概要: Deep Learning for Koopman Operator Estimation in Idealized Atmospheric Dynamics
- arxiv url: http://arxiv.org/abs/2409.06522v1
- Date: Tue, 10 Sep 2024 13:56:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 17:25:26.942906
- Title: Deep Learning for Koopman Operator Estimation in Idealized Atmospheric Dynamics
- Title(参考訳): 理想化大気力学におけるクープマン演算子推定のための深層学習
- Authors: David Millard, Arielle Carr, Stéphane Gaudreault,
- Abstract要約: ディープラーニングは、気象予報に革命をもたらしており、新しいデータ駆動モデルは、中期予測のための運用物理モデルと同等の精度を達成している。
これらのモデルは解釈可能性に欠けることが多く、基礎となる力学を理解するのが難しく、説明が難しい。
本稿では、データ駆動モデルの透明性を高めるために、複雑な非線形力学の線形表現を提供するクープマン作用素を推定する手法を提案する。
- 参考スコア(独自算出の注目度): 2.2489531925874013
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning is revolutionizing weather forecasting, with new data-driven models achieving accuracy on par with operational physical models for medium-term predictions. However, these models often lack interpretability, making their underlying dynamics difficult to understand and explain. This paper proposes methodologies to estimate the Koopman operator, providing a linear representation of complex nonlinear dynamics to enhance the transparency of data-driven models. Despite its potential, applying the Koopman operator to large-scale problems, such as atmospheric modeling, remains challenging. This study aims to identify the limitations of existing methods, refine these models to overcome various bottlenecks, and introduce novel convolutional neural network architectures that capture simplified dynamics.
- Abstract(参考訳): ディープラーニングは、気象予報に革命をもたらしており、新しいデータ駆動モデルは、中期予測のための運用物理モデルと同等の精度を達成している。
しかしながら、これらのモデルは解釈可能性に欠けることが多く、基礎となる力学を理解するのが難しく、説明が難しい。
本稿では、データ駆動モデルの透明性を高めるために、複雑な非線形力学の線形表現を提供するクープマン作用素を推定する手法を提案する。
その可能性にもかかわらず、クープマン作用素を大気モデルのような大規模問題に適用することは依然として困難である。
本研究の目的は、既存の手法の限界を特定し、これらのモデルを洗練して様々なボトルネックを克服し、単純化されたダイナミクスを捉える新しい畳み込みニューラルネットワークアーキテクチャを導入することである。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - Towards Efficient Modelling of String Dynamics: A Comparison of State Space and Koopman based Deep Learning Methods [8.654571696634825]
State Space Models (SSM) と Koopman に基づくディープラーニング手法は、線形および非線形の剛弦の力学をモデル化する。
以上の結果から,提案したクープマンモデルが,長周期モデリングにおける非線形ケースにおいて,他の既存手法と同等以上の性能を示すことが示唆された。
本研究は、これらの手法と過去の手法の比較概要を提供し、モデル改善のための革新的な戦略を導入することにより、力学系の物理モデリングに関する洞察を貢献する。
論文 参考訳(メタデータ) (2024-08-29T15:55:27Z) - Towards Learning Stochastic Population Models by Gradient Descent [0.0]
パラメータと構造を同時に推定することで,最適化手法に大きな課題が生じることを示す。
モデルの正確な推定を実証するが、擬似的、解釈可能なモデルの推論を強制することは、難易度を劇的に高める。
論文 参考訳(メタデータ) (2024-04-10T14:38:58Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
そこで本研究では,遅延座標符号化と全状態復号化を組み合わせた汎用モデル構造を提案し,Koopmanモデリングと状態推定を統合した。
ケーススタディでは,本手法が正確な制御モデルを提供し,高純度極低温蒸留塔のリアルタイム非線形予測制御を可能にすることを実証している。
論文 参考訳(メタデータ) (2024-01-09T11:54:54Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Learning Low-Dimensional Quadratic-Embeddings of High-Fidelity Nonlinear
Dynamics using Deep Learning [9.36739413306697]
データから動的モデルを学ぶことは、エンジニアリング設計、最適化、予測において重要な役割を果たす。
深層学習を用いて高忠実度力学系に対する低次元埋め込みを同定する。
論文 参考訳(メタデータ) (2021-11-25T10:09:00Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Operator Inference and Physics-Informed Learning of Low-Dimensional
Models for Incompressible Flows [5.756349331930218]
本稿では,データからの非圧縮性流れに対する構造的低次モデル学習への新たなアプローチを提案する。
本研究では,速度と圧力の学習ダイナミクスを分離し,効率的な演算子推論手法を提案する。
論文 参考訳(メタデータ) (2020-10-13T21:26:19Z) - Automating Turbulence Modeling by Multi-Agent Reinforcement Learning [4.784658158364452]
乱流モデルの自動検出ツールとしてマルチエージェント強化学習を導入する。
等方性乱流と等方性乱流の大規模渦シミュレーションにおけるこのアプローチの可能性を示す。
論文 参考訳(メタデータ) (2020-05-18T18:45:09Z) - Forecasting Sequential Data using Consistent Koopman Autoencoders [52.209416711500005]
クープマン理論に関連する新しい物理学に基づく手法が導入された。
本稿では,既存の作業の多くと異なり,前方・後方のダイナミクスを生かした新しいコンシスタント・クープマン・オートエンコーダモデルを提案する。
このアプローチの鍵となるのは、一貫性のある力学と関連するクープマン作用素との相互作用を探索する新しい解析である。
論文 参考訳(メタデータ) (2020-03-04T18:24:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。