論文の概要: Self-Supervised Pretext Tasks for Alzheimer's Disease Classification using 3D Convolutional Neural Networks on Large-Scale Synthetic Neuroimaging Dataset
- arxiv url: http://arxiv.org/abs/2406.14210v1
- Date: Thu, 20 Jun 2024 11:26:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-21 14:11:31.145261
- Title: Self-Supervised Pretext Tasks for Alzheimer's Disease Classification using 3D Convolutional Neural Networks on Large-Scale Synthetic Neuroimaging Dataset
- Title(参考訳): 大規模合成神経画像データセットを用いた3次元畳み込みニューラルネットワークを用いたアルツハイマー病分類のための自己監督的前提課題
- Authors: Chen Zheng,
- Abstract要約: アルツハイマー病(Alzheimer's Disease, AD)は、脳の局所的および広範な神経変性を誘導する疾患である。
本研究では、下流ADとCN分類のための特徴抽出器を訓練するための教師なし手法をいくつか評価した。
- 参考スコア(独自算出の注目度): 11.173478552040441
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Structural magnetic resonance imaging (MRI) studies have shown that Alzheimer's Disease (AD) induces both localised and widespread neural degenerative changes throughout the brain. However, the absence of segmentation that highlights brain degenerative changes presents unique challenges for training CNN-based classifiers in a supervised fashion. In this work, we evaluated several unsupervised methods to train a feature extractor for downstream AD vs. CN classification. Using the 3D T1-weighted MRI data of cognitive normal (CN) subjects from the synthetic neuroimaging LDM100K dataset, lightweight 3D CNN-based models are trained for brain age prediction, brain image rotation classification, brain image reconstruction and a multi-head task combining all three tasks into one. Feature extractors trained on the LDM100K synthetic dataset achieved similar performance compared to the same model using real-world data. This supports the feasibility of utilising large-scale synthetic data for pretext task training. All the training and testing splits are performed on the subject-level to prevent data leakage issues. Alongside the simple preprocessing steps, the random cropping data augmentation technique shows consistent improvement across all experiments.
- Abstract(参考訳): 構造核磁気共鳴イメージング(MRI)研究は、アルツハイマー病(AD)が脳全体に局所的および広範囲にわたる神経変性を誘導することを示した。
しかし、脳変性変化を強調させるセグメンテーションの欠如は、CNNベースの分類器を教師付きで訓練する上で、ユニークな課題となる。
本研究では、下流ADとCN分類のための特徴抽出器を訓練するための教師なし手法をいくつか評価した。
3D T1-weighted MRI data of Cognitive normal (CN) subjects from the synthetic neuroimaging LDM100K dataset, lightweight 3D CNN-based model are training for brain age prediction, brain image rotation classification, brain image reconstruction and a multi-head task combined all three task into one。
LDM100K合成データセットで訓練した特徴抽出器は、実世界のデータを用いたモデルと同等の性能を達成した。
これにより、大規模合成データをプリテキストタスクトレーニングに活用することが可能になる。
すべてのトレーニングとテストの分割は、データ漏洩の問題を防ぐために、被験者レベルで実行される。
単純な前処理のステップに加えて、ランダムな収穫データ拡張技術はすべての実験で一貫した改善を示している。
関連論文リスト
- Self-supervised Brain Lesion Generation for Effective Data Augmentation of Medical Images [0.9626666671366836]
本稿では,脳病変分割モデルのトレーニングのための,新しい現実的なサンプルを効率よく生成するフレームワークを提案する。
まず, 対向型自己エンコーダに基づく病変発生器を自己管理的に訓練する。
次に,新しい画像合成アルゴリズムであるSoft Poisson Blendingを用いて,合成病変と脳画像のシームレスな結合を行う。
論文 参考訳(メタデータ) (2024-06-21T01:53:12Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
本稿では,脳波を連続的にモデル化するBrainODEというモデルを提案する。
遅延初期値とニューラルODE関数を不規則な時系列から学習することにより、BrainODEは任意の時点の脳信号を効果的に再構築する。
論文 参考訳(メタデータ) (2024-04-30T10:53:30Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Video and Synthetic MRI Pre-training of 3D Vision Architectures for
Neuroimage Analysis [3.208731414009847]
トランスファーラーニングは、特定のタスクに適応するために、大規模なデータコーパスでディープラーニングモデルを事前訓練することを含む。
視覚変換器 (ViTs) と畳み込みニューラルネットワーク (CNNs) のベンチマークを行った。
得られた事前訓練されたモデルは、ターゲットタスクのトレーニングデータが制限されている場合でも、さまざまな下流タスクに適応することができる。
論文 参考訳(メタデータ) (2023-09-09T00:33:23Z) - Efficiently Training Vision Transformers on Structural MRI Scans for
Alzheimer's Disease Detection [2.359557447960552]
ビジョントランスフォーマー(ViT)は近年、コンピュータビジョンアプリケーションのためのCNNの代替として登場した。
難易度に基づいて,脳神経画像の下流タスクに対するViTアーキテクチャの変種を検証した。
合成および実MRIスキャンで事前訓練した微調整型視覚変換器モデルを用いて、5%と9-10%の性能向上を実現した。
論文 参考訳(メタデータ) (2023-03-14T20:18:12Z) - Cross-Modality Neuroimage Synthesis: A Survey [71.27193056354741]
マルチモダリティイメージングは、疾患の診断を改善し、解剖学的特性を持つ組織における相違を明らかにする。
完全な整列とペアの多モードニューロイメージングデータの存在は、脳研究においてその効果を証明している。
もう一つの解決策は、教師なしまたは弱教師なしの学習方法を探究し、欠落した神経画像データを合成することである。
論文 参考訳(メタデータ) (2022-02-14T19:29:08Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3Dポーズデータは、手動で介入することなく、マルチビュービデオシーケンスから確実に抽出できる。
本稿では,ニューラルアクション表現の符号化を,ニューラルアクションと行動拡張のセットと共に導くために使用することを提案する。
ドメインギャップを減らすために、トレーニングの間、同様の行動をしているように見える動物間で神経と行動のデータを取り替える。
論文 参考訳(メタデータ) (2021-12-02T12:45:46Z) - Evaluation of augmentation methods in classifying autism spectrum
disorders from fMRI data with 3D convolutional neural networks [0.0]
我々は,3D畳み込みニューラルネットワーク(CNN)を前処理した1,112人の被験者の安静状態誘導体を用いて分類を行う。
以上の結果から,Augmentationはテスト精度をわずかに改善するだけであることがわかった。
論文 参考訳(メタデータ) (2021-10-20T11:03:17Z) - 3D Convolutional Neural Networks for Stalled Brain Capillary Detection [72.21315180830733]
脳毛細血管の血流停止などの脳血管障害は、アルツハイマー病の認知機能低下と病態形成と関連している。
本稿では,3次元畳み込みニューラルネットワークを用いた脳画像中の毛細血管の自動検出のための深層学習に基づくアプローチについて述べる。
本手法は,他の手法よりも優れ,0.85マシューズ相関係数,85%感度,99.3%特異性を達成した。
論文 参考訳(メタデータ) (2021-04-04T20:30:14Z) - Predicting brain-age from raw T 1 -weighted Magnetic Resonance Imaging
data using 3D Convolutional Neural Networks [0.45077088620792216]
脳の磁気共鳴イメージング(MRI)データに基づく年齢予測は、脳疾患や老化の進行を定量化するバイオマーカーである。
現在のアプローチでは、voxelを標準化された脳アトラスに登録するなど、複数の前処理ステップでデータを準備する。
ここでは、ResNetアーキテクチャに基づく3D Convolutional Neural Network(CNN)について、未登録のT1重み付きMRIデータに基づいてトレーニングします。
論文 参考訳(メタデータ) (2021-03-22T09:48:34Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。