論文の概要: A Solution to Product detection in Densely Packed Scenes
- arxiv url: http://arxiv.org/abs/2007.11946v3
- Date: Tue, 10 Aug 2021 07:45:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 12:38:45.668322
- Title: A Solution to Product detection in Densely Packed Scenes
- Title(参考訳): 密集したシーンにおける製品検出の一解法
- Authors: Tianze Rong, Yanjia Zhu, Hongxiang Cai, Yichao Xiong
- Abstract要約: この研究は、密集したシーンデータセットSKU-110kの解決策である。
本手法は,SKU-110kの試験セット上で58.7mAPを得る。
- 参考スコア(独自算出の注目度): 0.14337588659482517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work is a solution to densely packed scenes dataset SKU-110k. Our work
is modified from Cascade R-CNN. To solve the problem, we proposed a random crop
strategy to ensure both the sampling rate and input scale is relatively
sufficient as a contrast to the regular random crop. And we adopted some of
trick and optimized the hyper-parameters. To grasp the essential feature of the
densely packed scenes, we analysis the stages of a detector and investigate the
bottleneck which limits the performance. As a result, our method obtains 58.7
mAP on test set of SKU-110k.
- Abstract(参考訳): この研究は、密集したシーンデータセットSKU-110kの解決策である。
私たちの仕事はカスケードR-CNNから修正されています。
そこで,本研究では,ランダム農作物に対して,サンプリング率と入力スケールが相対的に十分であることを示すランダム農作物戦略を提案した。
そして、いくつかのトリックを採用し、ハイパーパラメータを最適化しました。
密集したシーンの本質的特徴を把握するため,検出器のステージを分析し,性能を制限したボトルネックについて検討する。
その結果,SKU-110kの試験セット上で58.7mAPを得ることができた。
関連論文リスト
- TS-RSR: A provably efficient approach for batch bayesian optimization [4.622871908358325]
本稿では,Phompson Smpling-Regret to Sigma Ratio Direct sampleという,バッチベイズ最適化(BO)の新しい手法を提案する。
我々のサンプリング目的は、各バッチで選択されたアクションを、ポイント間の冗長性を最小化する方法で調整することができる。
提案手法は, 難解な合成および現実的なテスト機能において, 最先端の性能を達成できることを実証する。
論文 参考訳(メタデータ) (2024-03-07T18:58:26Z) - Accelerating Diffusion Sampling with Optimized Time Steps [69.21208434350567]
拡散確率モデル(DPM)は高分解能画像合成において顕著な性能を示した。
彼らのサンプリング効率は、通常多くのサンプリングステップのため、依然として望まれている。
DPM用高次数値ODEソルバの最近の進歩により、サンプリングステップがはるかに少ない高品質な画像の生成が可能になった。
論文 参考訳(メタデータ) (2024-02-27T10:13:30Z) - The Surprising Effectiveness of Skip-Tuning in Diffusion Sampling [78.6155095947769]
Skip-Tuningは、スキップ接続上でシンプルだが驚くほど効果的にトレーニング不要なチューニング方法である。
ImageNet 64 では 19 NFE (1.75) で事前訓練された EDM に対して100% FID の改善が可能である。
Skip-Tuningは画素空間におけるスコアマッチング損失を増加させる一方、特徴空間における損失は減少する。
論文 参考訳(メタデータ) (2024-02-23T08:05:23Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
グラディエントDescent(SGD)のための量子クリッピング戦略を導入する。
通常のクリッピングチェーンとして、グラデーション・ニュー・アウトリージを使用します。
本稿では,Huberiles を用いたアルゴリズムの実装を提案する。
論文 参考訳(メタデータ) (2023-09-29T15:24:48Z) - Learning Rate Free Sampling in Constrained Domains [21.853333421463603]
我々は、完全に学習率の低い制約付き領域をサンプリングするための新しい粒子ベースのアルゴリズム一式を導入する。
我々は,本アルゴリズムの性能を,単純度に基づくターゲットからのサンプリングを含む,様々な数値的な例で示す。
論文 参考訳(メタデータ) (2023-05-24T09:31:18Z) - Preconditioned Score-based Generative Models [49.88840603798831]
直感的な加速度法はサンプリングの繰り返しを減らし、しかしながら重大な性能劣化を引き起こす。
本稿では,行列プレコンディショニングを利用したモデル非依存型bfem事前条件拡散サンプリング(PDS)手法を提案する。
PDSは、バニラSGMのサンプリングプロセスを限界余剰計算コストで変更し、モデルの再訓練を行わない。
論文 参考訳(メタデータ) (2023-02-13T16:30:53Z) - Convex Hull Prediction for Adaptive Video Streaming by Recurrent Learning [38.574550778712236]
本稿では,コンテンツ認識凸船体予測の深層学習に基づく手法を提案する。
再帰的畳み込みネットワーク(RCN)を用いて,映像の複雑さを暗黙的に解析し,その凸殻を予測する。
提案するモデルでは, 最適凸殻の近似精度が向上し, 既存の手法と比較して, 競争時間の節約が期待できる。
論文 参考訳(メタデータ) (2022-06-10T05:11:02Z) - Super-resolution GANs of randomly-seeded fields [68.8204255655161]
ランダムスパースセンサからフィールド量の推定を行うための,GAN(Super- resolution Generative Adversarial Network)フレームワークを提案する。
このアルゴリズムはランダムサンプリングを利用して、高解像度の基底分布の不完全ビューを提供する。
提案手法は, 流体流動シミュレーション, 海洋表面温度分布測定, 粒子画像速度測定データの合成データベースを用いて検証した。
論文 参考訳(メタデータ) (2022-02-23T18:57:53Z) - Input-Specific Robustness Certification for Randomized Smoothing [76.76115360719837]
本稿では,ロバストネス認証の費用対効果を達成するために,インプット・スペクティブ・サンプリング(ISS)の高速化を提案する。
ISSは、認定半径0.05の限られたコストで3回以上、認定をスピードアップすることができる。
論文 参考訳(メタデータ) (2021-12-21T12:16:03Z) - STORM+: Fully Adaptive SGD with Momentum for Nonconvex Optimization [74.1615979057429]
本研究では,スムーズな損失関数に対する期待値である非バッチ最適化問題について検討する。
我々の研究は、学習率と運動量パラメータを適応的に設定する新しいアプローチとともに、STORMアルゴリズムの上に構築されている。
論文 参考訳(メタデータ) (2021-11-01T15:43:36Z) - Incremental Without Replacement Sampling in Nonconvex Optimization [0.0]
経験的リスクに対する最小限の分解法は、一般に近似設定で分析される。
一方、このような手法の現代的な実装は漸進的であり、それらは置換せずにサンプリングに依存しており、利用可能な分析は極めて少ない。
我々は、多変数な漸進勾配スキームを解析することにより、後者の変分に対する収束保証を提供する。
論文 参考訳(メタデータ) (2020-07-15T09:17:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。