Long-tail Session-based Recommendation
- URL: http://arxiv.org/abs/2007.12329v2
- Date: Tue, 4 Aug 2020 02:00:35 GMT
- Title: Long-tail Session-based Recommendation
- Authors: Siyi Liu and Yujia Zheng
- Abstract summary: We propose a novel network architecture, namely TailNet, to improve long-tail recommendation performance.
A novel is proposed and applied in TailNet to determine user preference between two types of items, so as to softly adjust and personalize recommendations.
- Score: 7.832914615902803
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Session-based recommendation focuses on the prediction of user actions based
on anonymous sessions and is a necessary method in the lack of user historical
data. However, none of the existing session-based recommendation methods
explicitly takes the long-tail recommendation into consideration, which plays
an important role in improving the diversity of recommendation and producing
the serendipity. As the distribution of items with long-tail is prevalent in
session-based recommendation scenarios (e.g., e-commerce, music, and TV program
recommendations), more attention should be put on the long-tail session-based
recommendation. In this paper, we propose a novel network architecture, namely
TailNet, to improve long-tail recommendation performance, while maintaining
competitive accuracy performance compared with other methods. We start by
classifying items into short-head (popular) and long-tail (niche) items based
on click frequency. Then a novel is proposed and applied in TailNet to
determine user preference between two types of items, so as to softly adjust
and personalize recommendations. Extensive experiments on two real-world
datasets verify the superiority of our method compared with state-of-the-art
works.
Related papers
- Preference Diffusion for Recommendation [50.8692409346126]
We propose PreferDiff, a tailored optimization objective for DM-based recommenders.
PreferDiff transforms BPR into a log-likelihood ranking objective to better capture user preferences.
It is the first personalized ranking loss designed specifically for DM-based recommenders.
arXiv Detail & Related papers (2024-10-17T01:02:04Z) - A Large Language Model Enhanced Sequential Recommender for Joint Video and Comment Recommendation [77.42486522565295]
We propose a novel recommendation approach called LSVCR to jointly conduct personalized video and comment recommendation.
Our approach consists of two key components, namely sequential recommendation (SR) model and supplemental large language model (LLM) recommender.
In particular, we achieve a significant overall gain of 4.13% in comment watch time.
arXiv Detail & Related papers (2024-03-20T13:14:29Z) - Personalizing Intervened Network for Long-tailed Sequential User
Behavior Modeling [66.02953670238647]
Tail users suffer from significantly lower-quality recommendation than the head users after joint training.
A model trained on tail users separately still achieve inferior results due to limited data.
We propose a novel approach that significantly improves the recommendation performance of the tail users.
arXiv Detail & Related papers (2022-08-19T02:50:19Z) - Heterogeneous Graph Neural Network for Personalized Session-Based
Recommendation with User-Session Constraints [0.0]
Session-based recommendation attempts to recommend items by interpreting sessions that consist of sequences of items.
In this paper, we consider various relationships in graph created by sessions through Heterogeneous attention network.
It seeks to increase performance through additional optimization in the training process.
arXiv Detail & Related papers (2022-05-23T14:35:26Z) - Price DOES Matter! Modeling Price and Interest Preferences in
Session-based Recommendation [55.0391061198924]
Session-based recommendation aims to predict items that an anonymous user would like to purchase based on her short behavior sequence.
It is nontrivial to incorporate price preferences for session-based recommendation.
We propose a novel method Co-guided Heterogeneous Hypergraph Network (CoHHN) for session-based recommendation.
arXiv Detail & Related papers (2022-05-09T10:47:15Z) - Improving Long-Term Metrics in Recommendation Systems using
Short-Horizon Offline RL [56.20835219296896]
We study session-based recommendation scenarios where we want to recommend items to users during sequential interactions to improve their long-term utility.
We develop a new batch RL algorithm called Short Horizon Policy Improvement (SHPI) that approximates policy-induced distribution shifts across sessions.
arXiv Detail & Related papers (2021-06-01T15:58:05Z) - Session-aware Recommendation: A Surprising Quest for the
State-of-the-art [6.617487928813376]
Session-aware recommendations can be personalized according to the users' long-term preferences.
We benchmarked recent session-aware algorithms against each other and against a number of session-based recommendation algorithms.
Our work indicates that there remains a huge potential for more sophisticated session-aware recommendation algorithms.
arXiv Detail & Related papers (2020-11-06T15:18:01Z) - Comprehensive Empirical Evaluation of Deep Learning Approaches for
Session-based Recommendation in E-Commerce [38.42250061908039]
In session-based recommendation, a recommendation system counts on the sequence of events made by a user within the same session to predict and endorse other items.
We present a comprehensive evaluation of the state-of-the-art deep learning approaches used in the session-based recommendation.
arXiv Detail & Related papers (2020-10-17T17:22:35Z) - Towards Comprehensive Recommender Systems: Time-Aware
UnifiedcRecommendations Based on Listwise Ranking of Implicit Cross-Network
Data [33.17802459749589]
We propose a novel deep learning based unified cross-network solution to mitigate cold-start and data sparsity issues.
We show that the proposed solution is superior in terms of accuracy, novelty and diversity.
Experiments conducted on the popular MovieLens dataset suggest that the proposed listwise ranking method outperforms existing state-of-the-art ranking techniques.
arXiv Detail & Related papers (2020-08-25T08:08:03Z) - Sequential recommendation with metric models based on frequent sequences [0.688204255655161]
We propose to use frequent sequences to identify the most relevant part of the user history for the recommendation.
The most salient items are then used in a unified metric model that embeds items based on user preferences and sequential dynamics.
arXiv Detail & Related papers (2020-08-12T22:08:04Z) - A Bayesian Approach to Conversational Recommendation Systems [60.12942570608859]
We present a conversational recommendation system based on a Bayesian approach.
A case study based on the application of this approach to emphstagend.com, an online platform for booking entertainers, is discussed.
arXiv Detail & Related papers (2020-02-12T15:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.