論文の概要: A Multi-Policy Framework for Deep Learning-Based Fake News Detection
- arxiv url: http://arxiv.org/abs/2206.11866v1
- Date: Wed, 1 Jun 2022 21:25:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-27 03:28:39.453213
- Title: A Multi-Policy Framework for Deep Learning-Based Fake News Detection
- Title(参考訳): 深層学習に基づく偽ニュース検出のためのマルチポリシーフレームワーク
- Authors: Jo\~ao Vitorino, Tiago Dias, Tiago Fonseca, Nuno Oliveira, Isabel
Pra\c{c}a
- Abstract要約: フェイクニュース検出を自動化するフレームワークであるMPSC(Multi-Policy Statement Checker)を導入する。
MPSCは、深層学習技術を用いて、文自体とその関連するニュース記事を分析し、それが信頼できるか疑わしいかを予測する。
- 参考スコア(独自算出の注目度): 0.31498833540989407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Connectivity plays an ever-increasing role in modern society, with people all
around the world having easy access to rapidly disseminated information.
However, a more interconnected society enables the spread of intentionally
false information. To mitigate the negative impacts of fake news, it is
essential to improve detection methodologies. This work introduces Multi-Policy
Statement Checker (MPSC), a framework that automates fake news detection by
using deep learning techniques to analyze a statement itself and its related
news articles, predicting whether it is seemingly credible or suspicious. The
proposed framework was evaluated using four merged datasets containing real and
fake news. Long-Short Term Memory (LSTM), Gated Recurrent Unit (GRU) and
Bidirectional Encoder Representations from Transformers (BERT) models were
trained to utilize both lexical and syntactic features, and their performance
was evaluated. The obtained results demonstrate that a multi-policy analysis
reliably identifies suspicious statements, which can be advantageous for fake
news detection.
- Abstract(参考訳): 接続性は、世界中の人々が急速に普及する情報に簡単にアクセスできる現代社会において、ますます活発な役割を担っている。
しかし、より相互に繋がった社会は故意に誤った情報を広めることができる。
フェイクニュースのネガティブな影響を軽減するためには,検出方法の改善が不可欠である。
深層学習技術を用いて偽ニュース検出を自動化するフレームワークであるMPSC(Multi-Policy Statement Checker)を導入し、文自体と関連するニュース記事を分析し、それが信頼できるか疑わしいかを予測する。
提案フレームワークは,実データと偽ニュースを含む4つの統合データセットを用いて評価した。
また,Long-Short Term Memory (LSTM), Gated Recurrent Unit (GRU), Bidirectional Encoder Representations from Transformers (BERT)モデルを用いて,語彙的特徴と構文的特徴を両立させる訓練を行い,その性能評価を行った。
その結果,マルチポリシー解析により疑わしい文を確実に識別でき,偽ニュースの検出に有利であることが判明した。
関連論文リスト
- Fake News Detection and Manipulation Reasoning via Large Vision-Language Models [38.457805116130004]
本稿では,Human-centric and Fact-related Fake News(HFFN)と呼ばれる偽ニュースの検出と操作の推論のためのベンチマークを紹介する。
このベンチマークでは、詳細なマニュアルアノテーションによって、人間の中心性と、高い事実的関連性を強調している。
M-DRUM(Multi-modal News Detection and Reasoning langUage Model)が提示される。
論文 参考訳(メタデータ) (2024-07-02T08:16:43Z) - MSynFD: Multi-hop Syntax aware Fake News Detection [27.046529059563863]
ソーシャルメディアプラットフォームは、偽ニュースを急速に拡散させ、われわれの現実社会に脅威を与えている。
既存の方法は、フェイクニュースの検出を強化するために、マルチモーダルデータまたはコンテキスト情報を使用する。
本稿では,偽ニュースの微妙なひねりに対処するための補完構文情報を含む,新しいマルチホップ構文認識型偽ニュース検出手法を提案する。
論文 参考訳(メタデータ) (2024-02-18T05:40:33Z) - Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
我々は,機械による(言い換えられた)リアルニュース,機械生成のフェイクニュース,人書きのフェイクニュース,人書きのリアルニュースの相互作用について検討する。
我々の実験では、人書き記事のみに特化して訓練された検知器が、機械が生成したフェイクニュースを検出できる興味深いパターンを明らかにしましたが、その逆ではありません。
論文 参考訳(メタデータ) (2023-11-02T08:39:45Z) - Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
プロンプト・アンド・アライン(Prompt-and-Align、P&A)は、数発のフェイクニュース検出のための新しいプロンプトベースのパラダイムである。
我々はP&Aが、数発のフェイクニュース検出性能をかなりのマージンで新たな最先端に設定していることを示す。
論文 参考訳(メタデータ) (2023-09-28T13:19:43Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
本稿では,ニュース間のグループ間相互作用を表現するためにハイパーグラフを活用することを提案する。
提案手法は,ラベル付きニュースデータの小さなサブセットであっても,優れた性能を示し,高い性能を維持する。
論文 参考訳(メタデータ) (2022-12-24T00:19:32Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverseは、偽ニュースの検出に使用できる多言語エビデンスに基づく新機能である。
偽ニュース検出機能としての言語間証拠の使用仮説を確認した。
論文 参考訳(メタデータ) (2022-11-25T18:24:17Z) - Applying Automatic Text Summarization for Fake News Detection [4.2177790395417745]
フェイクニュースの配信は新しいものではなく、急速に増加している問題だ。
本稿ではトランスフォーマーに基づく言語モデルのパワーを組み合わせた問題に対するアプローチを提案する。
我々のフレームワークであるCMTR-BERTは、複数のテキスト表現を組み合わせることで、コンテキスト情報の取り込みを可能にする。
論文 参考訳(メタデータ) (2022-04-04T21:00:55Z) - Explainable Tsetlin Machine framework for fake news detection with
credibility score assessment [16.457778420360537]
本稿では,最近導入されたTsetlin Machine (TM) に基づく,新たな解釈可能な偽ニュース検出フレームワークを提案する。
我々は、TMの接続節を用いて、真偽のニューステキストの語彙的および意味的特性をキャプチャする。
評価のために、PolitiFactとGossipCopという2つの公開データセットで実験を行い、TMフレームワークが以前公開されたベースラインを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2021-05-19T13:18:02Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
本研究では、ニュースレビュープラットフォームに組み込んだ説明可能なAIアシスタントが、フェイクニュースの拡散と戦う効果について検討する。
我々は、ニュースレビューと共有インターフェースを設計し、ニュース記事のデータセットを作成し、4つの解釈可能なフェイクニュース検出アルゴリズムを訓練する。
説明可能なAIシステムについてより深く理解するために、説明プロセスにおけるユーザエンゲージメント、メンタルモデル、信頼、パフォーマンス対策の相互作用について議論する。
論文 参考訳(メタデータ) (2020-07-24T05:42:29Z) - Leveraging Multi-Source Weak Social Supervision for Early Detection of
Fake News [67.53424807783414]
ソーシャルメディアは、人々が前例のない速度でオンライン活動に参加することを可能にする。
この制限のないアクセスは、誤情報や偽ニュースの拡散を悪化させ、その緩和のために早期に検出されない限り混乱と混乱を引き起こす可能性がある。
ソーシャルエンゲージメントからの弱い信号とともに、限られた量のクリーンデータを活用して、メタラーニングフレームワークでディープニューラルネットワークをトレーニングし、さまざまな弱いインスタンスの品質を推定します。
実世界のデータセットの実験では、提案されたフレームワークは、予測時にユーザーエンゲージメントを使わずに、フェイクニュースを早期に検出するための最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2020-04-03T18:26:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。