論文の概要: IDS at SemEval-2020 Task 10: Does Pre-trained Language Model Know What
to Emphasize?
- arxiv url: http://arxiv.org/abs/2007.12390v1
- Date: Fri, 24 Jul 2020 07:28:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 06:41:10.013907
- Title: IDS at SemEval-2020 Task 10: Does Pre-trained Language Model Know What
to Emphasize?
- Title(参考訳): IDS at SemEval-2020 Task 10: 事前訓練された言語モデルは何を強調すべきかを知っているか?
- Authors: Jaeyoul Shin, Taeuk Kim and Sang-goo Lee
- Abstract要約: 本稿では,事前学習言語モデル(PLM)の自己注意分布からのみの情報に頼って,視覚メディアにおける文章から強調すべき単語を判定する手法を提案する。
我々は、TF-IDFを採用する合理的なベースラインよりもゼロショットアプローチの方が優れていることを示し、強調選択に特化したPLMにはいくつかの注意点が存在することを示した。
- 参考スコア(独自算出の注目度): 16.990615110732524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel method that enables us to determine words that deserve to
be emphasized from written text in visual media, relying only on the
information from the self-attention distributions of pre-trained language
models (PLMs). With extensive experiments and analyses, we show that 1) our
zero-shot approach is superior to a reasonable baseline that adopts TF-IDF and
that 2) there exist several attention heads in PLMs specialized for emphasis
selection, confirming that PLMs are capable of recognizing important words in
sentences.
- Abstract(参考訳): 本稿では,事前学習された言語モデル(PLM)の自己注意分布からのみの情報に頼って,視覚メディアのテキストから強調すべき単語を判定する手法を提案する。
広範な実験と分析によって
1)ゼロショットアプローチはTF-IDFとそれを用いた合理的ベースラインよりも優れている。
2) 強調選択に特化したPLMにはいくつかの注意点があり, PLMは文中の重要な単語を認識できることを確認した。
関連論文リスト
- LAST: Language Model Aware Speech Tokenization [24.185165710384997]
本稿では,事前学習されたテキストLMの目的を活かして,音声トークン化者の訓練を行う新しい手法を提案する。
本研究の目的は,事前学習した音声モデルから,より優れたクラスタリングを実現するための新機能空間への変換である。
論文 参考訳(メタデータ) (2024-09-05T16:57:39Z) - Transformer based neural networks for emotion recognition in conversations [4.915541242112533]
論文は、SemEval 2024 Task 10: Emotion Discovery and Reasoning its Flip in Conversation (EDiReF)におけるISDS-NLPチームのアプローチの概要である。
論文 参考訳(メタデータ) (2024-05-18T08:05:05Z) - Assessing Phrase Break of ESL Speech with Pre-trained Language Models
and Large Language Models [7.782346535009883]
本研究では,事前学習言語モデル (PLM) と大規模言語モデル (LLM) を用いて,ESL学習者の音声における句分割の評価手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T07:10:39Z) - Self-Evolution Learning for Discriminative Language Model Pretraining [103.57103957631067]
自己進化学習(Self-Evolution Learning、SE)は、単純で効果的なトークンマスキングと学習方法である。
SEは情報的だが未探索のトークンを学習することに集中し、新しいToken固有のラベル平滑化アプローチを導入してトレーニングを適応的に調整する。
論文 参考訳(メタデータ) (2023-05-24T16:00:54Z) - Translate to Disambiguate: Zero-shot Multilingual Word Sense
Disambiguation with Pretrained Language Models [67.19567060894563]
事前訓練された言語モデル(PLM)は、豊富な言語間知識を学習し、多様なタスクでうまく機能するように微調整することができる。
C-WLT(Contextual Word-Level Translation)を用いた言語間単語感覚の捉え方の検討を行った。
モデルのサイズが大きくなるにつれて、PLMはより言語間単語認識の知識をエンコードし、WLT性能を改善するためのコンテキストを良くする。
論文 参考訳(メタデータ) (2023-04-26T19:55:52Z) - LERT: A Linguistically-motivated Pre-trained Language Model [67.65651497173998]
本稿では,3種類の言語特徴を学習する事前学習型言語モデルLERTを提案する。
我々は,中国における10のNLUタスクについて広範な実験を行い,LERTが大きな改善をもたらすことを示す実験結果を得た。
論文 参考訳(メタデータ) (2022-11-10T05:09:16Z) - Language Model Pre-Training with Sparse Latent Typing [66.75786739499604]
そこで本研究では,多種多様な潜在型を持つ文レベルのキーワードを疎に抽出することのできる,事前学習対象Sparse Latent Typingを提案する。
実験結果から,本モデルは外部知識を使わずに,自己教師型で解釈可能な潜在型カテゴリを学習できることが示唆された。
論文 参考訳(メタデータ) (2022-10-23T00:37:08Z) - Bridging the Gap between Language Models and Cross-Lingual Sequence
Labeling [101.74165219364264]
大規模言語間事前学習言語モデル (xPLM) は、言語間シーケンスラベリングタスクにおいて有効であることを示す。
大きな成功にもかかわらず、事前学習と微調整の段階の間には訓練対象のギャップがあるという経験的観察を描いている。
本稿では,まず,言語間インフォーマティブ・スパン・マスキング(CLISM)と呼ばれるxSLのための事前学習タスクを設計し,目的のギャップを解消する。
第2に、コントラスト学習を利用して入力並列表現間の一貫性を促進するContrAstive-Consistency Regularization (CACR)を提案する。
論文 参考訳(メタデータ) (2022-04-11T15:55:20Z) - Masked Language Modeling and the Distributional Hypothesis: Order Word
Matters Pre-training for Little [74.49773960145681]
マスク言語モデル(MLM)トレーニングの印象的なパフォーマンスの可能な説明は、そのようなモデルがNLPパイプラインで広く普及している構文構造を表現することを学びました。
本稿では,先行訓練がダウンストリームタスクでほぼ完全に成功する理由として,高次単語共起統計をモデル化できることを挙げる。
以上の結果から,純粋分布情報は,事前学習の成功を主に説明し,深い言語知識を必要とする難易度評価データセットのキュレーションの重要性を強調する。
論文 参考訳(メタデータ) (2021-04-14T06:30:36Z) - DICT-MLM: Improved Multilingual Pre-Training using Bilingual
Dictionaries [8.83363871195679]
主要な言語学習目的としてのマスケプド・モデリング(MLM)の目的。
DICT-MLMは、オリジナルのマスキングされた単語だけでなく、言語間の同義語も予測できるようにモデルにインセンティブを与える。
30以上の言語にまたがる複数の下流タスクに関する実証分析により,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2020-10-23T17:53:11Z) - Multilingual Chart-based Constituency Parse Extraction from Pre-trained
Language Models [21.2879567125422]
本稿では,事前学習した言語モデルから完全(バイナリ)構文を抽出する手法を提案する。
本手法を多言語 PLM に適用することにより,9つの言語から文に対する非自明なパースを導き出すことができる。
論文 参考訳(メタデータ) (2020-04-08T05:42:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。