Learning the Solution Manifold in Optimization and Its Application in
Motion Planning
- URL: http://arxiv.org/abs/2007.12397v1
- Date: Fri, 24 Jul 2020 08:05:36 GMT
- Title: Learning the Solution Manifold in Optimization and Its Application in
Motion Planning
- Authors: Takayuki Osa
- Abstract summary: We learn manifold on the variable such as the variable such model represents an infinite set of solutions.
In our framework, we reduce problem estimation by using this importance.
We apply to motion-planning problems, which involve the optimization of high-dimensional parameters.
- Score: 4.177892889752434
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Optimization is an essential component for solving problems in wide-ranging
fields. Ideally, the objective function should be designed such that the
solution is unique and the optimization problem can be solved stably. However,
the objective function used in a practical application is usually non-convex,
and sometimes it even has an infinite set of solutions. To address this issue,
we propose to learn the solution manifold in optimization. We train a model
conditioned on the latent variable such that the model represents an infinite
set of solutions. In our framework, we reduce this problem to density
estimation by using importance sampling, and the latent representation of the
solutions is learned by maximizing the variational lower bound. We apply the
proposed algorithm to motion-planning problems, which involve the optimization
of high-dimensional parameters. The experimental results indicate that the
solution manifold can be learned with the proposed algorithm, and the trained
model represents an infinite set of homotopic solutions for motion-planning
problems.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Smooth Tchebycheff Scalarization for Multi-Objective Optimization [15.047246588148495]
Multi-objective optimization problems can be found in many real-world applications, where the objectives often conflict each other and cannot be optimized by a single solution.
We propose a lightweight and efficient smooth Tchebycheff scalarization approach for gradient-based multi-objective optimization.
arXiv Detail & Related papers (2024-02-29T12:03:05Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then- framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This approach can be inefficient and requires handcrafted, problem-specific rules for backpropagation through the optimization step.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by predictive models.
arXiv Detail & Related papers (2023-11-22T01:32:06Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Motion Planning by Learning the Solution Manifold in Trajectory
Optimization [6.127237810365965]
We present an optimization method that learns to generate an infinite set of solutions for motion planning problems.
Results indicate that the experimental model represents an infinite set of homotopic solutions for motion planning problems.
arXiv Detail & Related papers (2021-07-13T04:47:47Z) - Extracting Optimal Solution Manifolds using Constrained Neural
Optimization [6.800113407368289]
Constrained Optimization solution algorithms are restricted to point based solutions.
We present an approach for extracting optimal sets as approximate, where unmodified non-informed constraints are defined.
arXiv Detail & Related papers (2020-09-13T15:37:44Z) - sKPNSGA-II: Knee point based MOEA with self-adaptive angle for Mission
Planning Problems [2.191505742658975]
Some problems have many objectives which lead to a large number of non-dominated solutions.
This paper presents a new algorithm that has been designed to obtain the most significant solutions.
This new algorithm has been applied to the real world application in Unmanned Air Vehicle (UAV) Mission Planning Problem.
arXiv Detail & Related papers (2020-02-20T17:07:08Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
Resource allocation and transceivers in wireless networks are usually designed by solving optimization problems.
In this article, we introduce unsupervised and reinforced-unsupervised learning frameworks for solving both variable and functional optimization problems.
arXiv Detail & Related papers (2020-01-03T11:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.