論文の概要: Stain Style Transfer of Histopathology Images Via Structure-Preserved
Generative Learning
- arxiv url: http://arxiv.org/abs/2007.12578v1
- Date: Fri, 24 Jul 2020 15:30:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-07 06:30:01.574684
- Title: Stain Style Transfer of Histopathology Images Via Structure-Preserved
Generative Learning
- Title(参考訳): 構造保存型生成学習による病理像のステンスタイル移動
- Authors: Hanwen Liang, Konstantinos N. Plataniotis, Xingyu Li
- Abstract要約: 本研究では,SSIM-GANとDSCSI-GANの2つのステンスタイル転送モデルを提案する。
学習における構造保存指標と補助診断ネットのフィードバックを協調することにより、医療関連情報をカラー正規化画像に保存する。
- 参考スコア(独自算出の注目度): 31.254432319814864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computational histopathology image diagnosis becomes increasingly popular and
important, where images are segmented or classified for disease diagnosis by
computers. While pathologists do not struggle with color variations in slides,
computational solutions usually suffer from this critical issue. To address the
issue of color variations in histopathology images, this study proposes two
stain style transfer models, SSIM-GAN and DSCSI-GAN, based on the generative
adversarial networks. By cooperating structural preservation metrics and
feedback of an auxiliary diagnosis net in learning, medical-relevant
information presented by image texture, structure, and chroma-contrast features
is preserved in color-normalized images. Particularly, the smart treat of
chromatic image content in our DSCSI-GAN model helps to achieve noticeable
normalization improvement in image regions where stains mix due to histological
substances co-localization. Extensive experimentation on public histopathology
image sets indicates that our methods outperform prior arts in terms of
generating more stain-consistent images, better preserving histological
information in images, and obtaining significantly higher learning efficiency.
Our python implementation is published on
https://github.com/hanwen0529/DSCSI-GAN.
- Abstract(参考訳): コンピュータによる疾患診断のために画像の分類や分類を行うコンピュータ組織像診断はますます普及し重要になっている。
病理学者はスライドの色の変化に苦慮しないが、計算解は通常この重大な問題に悩まされる。
本研究は,病理組織像の色変化の問題に対処するため,生成的逆ネットワークに基づく2種類の染色様式伝達モデルであるssim-ganとdscsi-ganを提案する。
学習における構造保存指標と補助診断網のフィードバックを協調することにより、画像テクスチャ、構造、クロマコントラスト特徴によって提示される医療関連情報を、カラー正規化画像に保存する。
特に,DSCSI-GANモデルにおける有色画像のスマートな処理は,組織学的物質共局在により染色が混在する画像領域において顕著な正規化改善を実現するのに役立つ。
一般の病理組織像に対する広範囲な実験により,本手法は,より染色性の高い画像の生成,画像の組織情報保存,学習効率の向上など,先行技術よりも優れていたことが示唆された。
私たちのpythonの実装はhttps://github.com/hanwen0529/DSCSI-GANで公開されています。
関連論文リスト
- Stain-Invariant Representation for Tissue Classification in Histology Images [1.1624569521079424]
染色摂動行列を用いたトレーニング画像の染色増分版を生成するフレームワークを提案する。
大腸癌画像のクロスドメイン多クラス組織型分類における提案モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-11-21T23:50:30Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
自己教師型学習(SSL)からの埋め込みを条件とした拡散モデルを訓練する新しいアプローチを導入する。
我々の拡散モデルは、これらの特徴を高品質な病理組織学およびリモートセンシング画像に投影することに成功した。
実画像のバリエーションを生成して実データを増やすことにより、パッチレベルおよび大規模画像分類タスクの下流精度が向上する。
論文 参考訳(メタデータ) (2023-12-12T14:45:45Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
本稿では,病理組織像間でテクスチャを特徴付ける手法を提案する。
2つのHIデータセットに有望な精度で、そのような画像の固有特性を定量化することが可能である。
論文 参考訳(メタデータ) (2022-02-27T02:19:09Z) - H&E-adversarial network: a convolutional neural network to learn
stain-invariant features through Hematoxylin & Eosin regression [1.7371375427784381]
本稿では,様々な色の変化を含むデータに基づいて,畳み込みニューラルネットワーク(CNN)を学習する新しい手法を提案する。
H&E-adversarial CNNと呼ばれるこの手法は、トレーニング中にH&Eマトリックス情報を利用して、染色不変の特徴を学習する。
論文 参考訳(メタデータ) (2022-01-17T10:34:23Z) - Colorectal Polyp Classification from White-light Colonoscopy Images via
Domain Alignment [57.419727894848485]
大腸内視鏡画像からの正確な診断を支援するためには,コンピュータ支援診断システムが必要である。
これまでのほとんどの研究では、Narrow-Band Imaging (NBI) や他の拡張画像を用いて、ポリプの分化モデルの開発を試みている。
正確な大腸ポリープ分類のための教師/学生アーキテクチャに基づく新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-08-05T09:31:46Z) - Structure-Preserving Multi-Domain Stain Color Augmentation using
Style-Transfer with Disentangled Representations [0.9051352746190446]
HistAuGANは、様々な現実的な組織学の染色色をシミュレートできるため、トレーニング中にニューラルネットワークの染色が不変になる。
画像から画像への変換のためのGAN(generative adversarial network)に基づいて,画像の内容,すなわち形態的組織構造を染色色属性から切り離す。
複数のドメインでトレーニングすることができるため、スライド作成および撮像プロセスで導入された他のドメイン固有のバリエーションと同様に、異なる染色色をカバーできることを学ぶことができる。
論文 参考訳(メタデータ) (2021-07-26T17:52:39Z) - Learning domain-agnostic visual representation for computational
pathology using medically-irrelevant style transfer augmentation [4.538771844947821]
STRAP(Style TRansfer Augmentation for histoPathology)は、芸術絵画からのランダムなスタイル移行に基づくデータ拡張の一形態である。
スタイル転送は、画像の低レベルのテクスチャ内容をランダムに選択された芸術絵画の非形式的なスタイルに置き換える。
STRAPが最先端のパフォーマンス、特にドメインシフトの存在につながることを実証する。
論文 参考訳(メタデータ) (2021-02-02T18:50:16Z) - Bridging the gap between Natural and Medical Images through Deep
Colorization [15.585095421320922]
自然画像収集からの伝達学習は、形状、テクスチャ、色の違いに対処しようとする標準的な実践である。
本研究では,これらの課題を解消し,色適応に着目した専用ネットワークモジュールの設計を提案する。
カラーモジュールのスクラッチからの学習と異なる分類バックボーンの伝達学習を組み合わせることで、画像認識のためのエンドツーエンドで簡単にトレーニングできるアーキテクチャを得る。
論文 参考訳(メタデータ) (2020-05-21T12:03:14Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。