論文の概要: VLM-based Prompts as the Optimal Assistant for Unpaired Histopathology Virtual Staining
- arxiv url: http://arxiv.org/abs/2504.15545v1
- Date: Tue, 22 Apr 2025 02:46:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-30 22:39:44.227103
- Title: VLM-based Prompts as the Optimal Assistant for Unpaired Histopathology Virtual Staining
- Title(参考訳): VLMによる病理組織学的仮想染色の最適支援
- Authors: Zizhi Chen, Xinyu Zhang, Minghao Han, Yizhou Liu, Ziyun Qian, Weifeng Zhang, Xukun Zhang, Jingwei Wei, Lihua Zhang,
- Abstract要約: 病理組織学では、組織は一般的なH&E染色または特殊染色(MAS、PAS、PASMなど)を用いて染色され、特定の組織構造をはっきりと可視化する。
ディープラーニングの急速な進歩は、仮想的に染色された画像を生成する効果的なソリューションを提供する。
しかし, 染色剤による視覚的差異から, 組織切片の視覚的特徴を分離する上で, 新たな課題が生じる。
- 参考スコア(独自算出の注目度): 11.462625986342681
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In histopathology, tissue sections are typically stained using common H&E staining or special stains (MAS, PAS, PASM, etc.) to clearly visualize specific tissue structures. The rapid advancement of deep learning offers an effective solution for generating virtually stained images, significantly reducing the time and labor costs associated with traditional histochemical staining. However, a new challenge arises in separating the fundamental visual characteristics of tissue sections from the visual differences induced by staining agents. Additionally, virtual staining often overlooks essential pathological knowledge and the physical properties of staining, resulting in only style-level transfer. To address these issues, we introduce, for the first time in virtual staining tasks, a pathological vision-language large model (VLM) as an auxiliary tool. We integrate contrastive learnable prompts, foundational concept anchors for tissue sections, and staining-specific concept anchors to leverage the extensive knowledge of the pathological VLM. This approach is designed to describe, frame, and enhance the direction of virtual staining. Furthermore, we have developed a data augmentation method based on the constraints of the VLM. This method utilizes the VLM's powerful image interpretation capabilities to further integrate image style and structural information, proving beneficial in high-precision pathological diagnostics. Extensive evaluations on publicly available multi-domain unpaired staining datasets demonstrate that our method can generate highly realistic images and enhance the accuracy of downstream tasks, such as glomerular detection and segmentation. Our code is available at: https://github.com/CZZZZZZZZZZZZZZZZZ/VPGAN-HARBOR
- Abstract(参考訳): 病理組織学では、組織は一般的なH&E染色または特殊染色(MAS、PAS、PASMなど)を用いて染色され、特定の組織構造をはっきりと可視化する。
ディープラーニングの急速な進歩は、事実上の染色画像を生成する効果的なソリューションを提供し、従来の組織化学的染色に関連する時間と労力を著しく削減する。
しかし, 染色剤による視覚的差異から, 組織切片の視覚的特徴を分離する上で, 新たな課題が生じる。
さらに、仮想染色は、しばしば本質的な病理知識と染色の物理的性質を見落としており、結果としてスタイルレベルの移動のみが生じる。
これらの課題に対処するため,仮想染色作業において,病的視覚言語大モデル (VLM) を補助ツールとして導入した。
病理組織学的 VLM の広範な知識を活用するために, 対照的に学習可能なプロンプト, 組織切片の基本的概念アンカー, 染色特異的概念アンカーを統合した。
このアプローチは仮想染色の方向を記述し、フレーム化し、拡張するために設計されている。
さらに,VLMの制約に基づいたデータ拡張手法を開発した。
この方法は、VLMの強力な画像解釈機能を利用して、画像スタイルと構造情報をさらに統合し、高精度な病理診断に有用であることを示す。
公開されているマルチドメイン・アンペア染色データセットの広範囲な評価により,本手法は高度にリアルな画像を生成し,球状検出やセグメンテーションなどの下流タスクの精度を高めることができることが示された。
https://github.com/CZZZZZZZZZZZZZZZZZZZ/VPGAN-HARBOR
関連論文リスト
- PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
そこで我々は,Latent Diffusion Models (LDMs) を事前学習した特徴抽出器として活用する,病理組織像分割の新しい手法であるPathSegDiffを提案する。
本手法は,H&E染色組織像から多彩な意味情報を抽出するために,自己教師型エンコーダによって誘導される病理特異的LCMを用いる。
本実験は,BCSSおよびGlaSデータセットにおける従来の手法よりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2025-04-09T14:58:21Z) - From Pixels to Histopathology: A Graph-Based Framework for Interpretable Whole Slide Image Analysis [81.19923502845441]
我々はWSIグラフ表現を構成するグラフベースのフレームワークを開発する。
任意のパッチではなく生物学的境界に従う組織表現(ノード)を構築します。
本手法の最終段階として,グラフアテンションネットワークを用いて診断課題を解決する。
論文 参考訳(メタデータ) (2025-03-14T20:15:04Z) - A Value Mapping Virtual Staining Framework for Large-scale Histological Imaging [36.95712533471744]
各種条件に適応可能な汎用仮想染色フレームワークを提案する。
そこで本研究では,異なる病態間の仮想色付けの精度を確保するために,値マッピング制約に基づく損失関数を提案する。
論文 参考訳(メタデータ) (2025-01-07T07:45:21Z) - ViKL: A Mammography Interpretation Framework via Multimodal Aggregation of Visual-knowledge-linguistic Features [54.37042005469384]
MVKLは,マルチビュー画像,詳細な表示,報告を含む最初のマルチモーダルマンモグラフィーデータセットである。
このデータセットに基づいて、教師なし事前学習のチャラリングタスクに焦点を当てる。
視覚,知識,言語機能を相乗化するフレームワークであるViKLを提案する。
論文 参考訳(メタデータ) (2024-09-24T05:01:23Z) - Single color digital H&E staining with In-and-Out Net [0.8271394038014485]
本稿では,仮想染色タスクに特化して設計された新しいネットワークIn-and-Out Netを提案する。
我々はGAN(Generative Adversarial Networks)に基づいて,反射共焦点顕微鏡(RCM)画像からヘマトキシリンおよびエオシン染色画像へ効率的に変換する。
論文 参考訳(メタデータ) (2024-05-22T01:17:27Z) - HistoStarGAN: A Unified Approach to Stain Normalisation, Stain Transfer
and Stain Invariant Segmentation in Renal Histopathology [0.5505634045241288]
HistoStarGANは、複数の染色間での染色を行う統一されたフレームワークである。
合成データジェネレータとして機能し、完全に注釈付けされた合成画像データの使用方法を舗装する。
論文 参考訳(メタデータ) (2022-10-18T12:22:26Z) - A domain adaptive deep learning solution for scanpath prediction of
paintings [66.46953851227454]
本稿では,ある絵画の視覚的体験における視聴者の眼球運動分析に焦点を当てた。
我々は、人間の視覚的注意を予測するための新しいアプローチを導入し、人間の認知機能に影響を及ぼす。
提案した新しいアーキテクチャは、画像を取り込んでスキャンパスを返す。
論文 参考訳(メタデータ) (2022-09-22T22:27:08Z) - Virtual stain transfer in histology via cascaded deep neural networks [2.309018557701645]
ケースドディープニューラルネットワーク(C-DNN)による仮想染色伝達フレームワークの実証を行った。
C-DNNは、入力として1つの染色タイプのみを取り込んで別の染色タイプの画像をデジタル出力する単一のニューラルネットワーク構造とは異なり、まず仮想染色を使用して、自己蛍光顕微鏡画像をH&Eに変換する。
我々は,H&E染色組織像を仮想PAS( periodic acid-Schiff)染色に変換することに成功した。
論文 参考訳(メタデータ) (2022-07-14T00:43:18Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
緑内障は症状が重くなるまで無症状のままでいるため、検出が困難である。
緑内障の早期診断は機能的,構造的,臨床的評価に基づいて行われることが多い。
ディープラーニング手法はこのジレンマを、マーカー識別段階をバイパスし、ハイレベルな情報を分析してデータを分類することで部分的に解決している。
論文 参考訳(メタデータ) (2021-10-04T16:06:49Z) - Stain Style Transfer of Histopathology Images Via Structure-Preserved
Generative Learning [31.254432319814864]
本研究では,SSIM-GANとDSCSI-GANの2つのステンスタイル転送モデルを提案する。
学習における構造保存指標と補助診断ネットのフィードバックを協調することにより、医療関連情報をカラー正規化画像に保存する。
論文 参考訳(メタデータ) (2020-07-24T15:30:19Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。